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1 INTRODUCTION

SUMMARY

Modelling the lithospheric stress field has proved to be an efficient means of determining the
role of lithospheric versus sublithospheric buoyancies and also of constraining the driving
forces behind plate tectonics. Both these sources of buoyancies are important in generating the
lithospheric stress field. However, these sources and the contribution that they make are depen-
dent on a number of variables, such as the role of lateral strength variation in the lithosphere,
the reference level for computing the gravitational potential energy per unit area (GPE) of the
lithosphere, and even the definition of deviatoric stress. For the mantle contribution, much
depends on the mantle convection model, including the role of lateral and radial viscosity
variations, the spatial distribution of density buoyancies, and the resolution of the convection
model. GPE differences are influenced by both lithosphere density buoyancies and by radial
basal tractions that produce dynamic topography. The global lithospheric stress field can thus
be divided into (1) stresses associated with GPE differences (including the contribution from
radial basal tractions) and (2) stresses associated with the contribution of horizontal basal
tractions. In this paper, we investigate only the contribution of GPE differences, both with
and without the inferred contribution of radial basal tractions. We use the Crust 2.0 model to
compute GPE values and show that these GPE differences are not sufficient alone to match
all the directions and relative magnitudes of principal strain rate axes, as inferred from the
comparison of our depth integrated deviatoric stress tensor field with the velocity gradient
tensor field within the Earth’s plate boundary zones. We argue that GPE differences calibrate
the absolute magnitudes of depth integrated deviatoric stresses within the lithosphere; short-
comings of this contribution in matching the stress indicators within the plate boundary zones
can be corrected by considering the contribution from horizontal tractions associated with
density buoyancy driven mantle convection. Deviatoric stress magnitudes arising from GPE
differences are in the range of 1-4 TN -m~!, a part of which is contributed by dynamic topogra-
phy. The EGM96 geoid data set is also used as a rough proxy for GPE values in the lithosphere.
However, GPE differences from the geoid fail to yield depth integrated deviatoric stresses that
can provide a good match to the deformation indicators. GPE values inferred from the geoid
have significant shortcomings when used on a global scale due to the role of dynamically
support of topography. Another important factor in estimating the depth integrated deviatoric
stresses is the use of the correct level of reference in calculating GPE. We also elucidate the
importance of understanding the reference pressure for calculating deviatoric stress and show
that overestimates of deviatoric stress may result from either simplified 2-D approximations
of the thin sheet equations or the assumption that the mean stress is equal to the vertical stress.

Key words: Continental margins: convergent; Continental margins: divergent; Continental
margins: transform; Dynamics of lithosphere and mantle; Dynamics: gravity and tectonics;
Neotectonics.

Since the advent of plate tectonics there have existed considerable controversies regarding the nature, magnitude and source of the forces

that drive tectonic plates. The lithospheric stress field serves as an important indicator of these plate-driving forces. Lateral density variations
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within the lithosphere have been shown to be a major factor influencing the global stress field (Frank 1972; Artyushkov 1973; Fleitout &
Froidevoux 1982, 1983; Fleitout 1991; Coblentz et al. 1994; Coblentz & Sandiford 1994; Sandiford & Coblentz 1994; Coblentz et al. 1995;
laffaldano et al. 2006). Lithospheric deformation is not confined along narrow plate boundaries. Rather, deformation within many plate
boundary zones is distributed (McKenzie 1972; Molnar & Tapponnier 1975; England & McKenzie 1982; Molnar 1988; England & Jackson
1989; England & Molnar 1997; Flesch et al. 2000), with the bulk of crustal strain accommodated along major fault zones (Holt & Haines
1995; Holt ef al. 2000; Thatcher 2007; Meade 2007). In present-day modelling of the tectonic stresses, the notion of rigid plates has been
replaced by the notion of the continental lithosphere behaving as a continuous medium (England & Jackson 1989). The importance of this is
the recognition that resulting crustal thickening and thinning leads to important internal lateral and vertical density variations; these lateral and
vertical variations profoundly influence the deviatoric stress field in the lithosphere. Furthermore, it has also been recognized that horizontal
dimensions of deformation far exceed the thickness of the lithosphere, and in this regard lithospheric deformation has been quantified in
terms of a thin viscous sheet to solve for the depth averaged or depth integrated deviatoric stresses within the lithosphere over large scales
(England & McKenzie 1982; Houseman & England 1986; England & Jackson 1989; England & Molnar 1997; Flesch et al. 2001; Ghosh
et al. 2006, 2008). The assumption that goes with the thin sheet approximation is that the gradients of shear tractions at the base of the plate
are negligibly small compared to the force of gravity acting on density.

In terms of a thin sheet approach, the sources of stress within the lithosphere can be divided into two main categories: (1) stresses
associated with differences in gravitational potential energy per unit area (GPE differences) and (2) stresses associated with horizontal
tractions. Note that gravity acting on density buoyancies below the lithosphere can lead to both radial and horizontal tractions. The radial
tractions can lead to dynamic topography. We define GPE as the depth integrated vertical stress from surface of variable topography down
to a common-depth reference level. Therefore, the GPE contribution can contain the contribution from radial tractions associated with
density buoyancy-driven convection, since present-day topography contains, in places, a component of topography that may have a dynamic
origin. Removing the inferred dynamic component from the GPE differences involves compensating the lithosphere model via elevation
adjustment. In this paper, we use the thin sheet approximation to quantify deviatoric stresses within the lithosphere that are associated with
GPE differences, both with and without the inferred contribution from dynamic topography.

Generally, our depth of integration is from the surface down to a constant reference level of 100 km below sea level. This incorporates
the lithosphere for most parts of the Earth. However, we do investigate one special case of the contribution from deeper continental keels.
Under the assumption that there is no buoyancy-driven mantle convection, no dynamic topography, and hence, equal vertical stress at the
depth of the deepest continental keels, we integrate to a greater depth to account for deeper density buoyancies associated with continental
keels. Although neglecting the above factors represents an oversimplified approximation, we nevertheless explore the influence of integrating
to the base of the deepest continental keels to quantify differences with our standard reference level of 100 km.

We also investigate the role of lateral strength variations in the lithosphere. We calculate the depth integrated deviatoric stresses on a
one-plate planet of uniform lithospheric viscosity, in addition to the more realistic stress calculations on an Earth-like planet with weak plate
boundaries. We show how the consideration of laterally variable viscosities in the lithosphere enable the calculated deviatoric stresses to have
a better match with stress and strain rate observations.

Calculation of GPE requires a level of reference. When the vertical stress is laterally variable at the base of the depth of integration, the
choice of reference level has important dynamic implications. In this paper, we discuss the reference level problem in calculating GPE, and
show that for a thin sheet calculation in which the vertical stress varies beneath topography along the base of the depth of integration, there
is only one correct level of reference. In particular, we show that for such cases, the shallow density anomalies have a more dominant effect
on the depth integrated deviatoric stresses than the deeper anomalies. Another important aspect of our study is to bring forward substantial
changes in stress magnitudes that arise by solving the full 3-D force-balance equations instead of the 2-D equations, and also the importance
of using a correct definition of deviatoric stress. Although the total forces driving lithospheric deformation are a combination of both GPE
differences (including contribution from radial tractions) and horizontal tractions arising from density buoyancy-driven mantle convection
(Lithgow-Bertelloni & Guynn 2004), our study focuses only on quantification of the GPE contribution. We have addressed the contribution
from horizontal tractions elsewhere (Ghosh et al. 2008). Our confidence in the magnitude and distribution of GPE variations exceeds our
confidence in the magnitude and direction of basal tractions associated with mantle convection. Nevertheless, if the contribution from GPE
differences can be correctly quantified, both with and without inferred dynamic topography, then the misfit of the associated depth integrated
deviatoric stress field with stress tensor indicators holds promise for constraining the contribution associated with horizontal basal tractions.
Therefore, it is important to isolate the contribution of GPE differences to depth integrated deviatoric stresses because they calibrate the
absolute magnitudes of deviatoric stresses acting within the lithosphere.

2 THE FORCE BALANCE EQUATIONS AND VALIDITY
OF THE THIN SHEET APPROXIMATION

The force balance equations, which state that gradients of stresses are balanced by the force of gravity per unit volume, are given by

9o

9% | e =0, M
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where o;; is the ijth component of the total stress tensor, x; is the jth coordinate axis, p is the density and g; is the ith component of the
acceleration due to gravity (England & Molnar 1997). The above equations use summation notation, where i takes the values of x, y and z and
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the repeated index j represents the summation over x, y and z. For clarity we show the cartesian form of (1). However, we solve the spherical
form of (1) in our global calculations (see Appendix A).

We now explore the conditions under which the thin sheet approximation is valid. The basis of the thin sheet approach is that because
the horizontal distance scales are large in comparison with the thickness of the lithosphere, we can compute depth integrals of the force
balance equations down to a constant reference level, and then solve these equations for the depth integrals of deviatoric stress within that
layer. Expanding the z-equation from (1) and then integrating from the surface to the base of a uniform reference level, L, yields
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The approximation in the thin sheet approach is that
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such that, from (2) we have
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Assuming that o,(z) and o ,(z) are linear, from zero at the surface to o,,(L) and o,,(L) at the base, L, then the question is how large can
the gradients of shear tractions be in order for (3) to hold ? Using 3000 kg m~> for an average density of the lithosphere and a 100 km thick
lithosphere, we find that horizontal gradients in shear tractions applied to the base of the lithosphere at a depth of 100 km would have to be
as high as 6 MPa/10 km for the left-hand side of (3) to be 1 per cent of the magnitude of the right-hand side of (3), the vertical stress at
depth L. This is at least an order of magnitude higher than horizontal variations of tractions from large scale mantle circulation (Steinberger
et al. 2001; Becker & O’Connell 2001), and is likely to be much larger than the most extreme gradients in tractions that might occur beneath
subduction zones. Therefore, the ‘thin sheet’ approximation in (3) is valid, in which case we can use the relation in (4) for the vertical stress,
and solve only the two horizontal force balance equations to investigate depth integrals of horizontal deviatoric stress.

Substituting into (1) for the total stresses via the relationship, ; = oy — %crkkﬁ where 7;; is the ijth component of the deviatoric stress

ijs
tensor, §;; is the Kronecker delta, and %O’kk is the mean total stress and integrating (1) over the thickness of the lithosphere, we arrive at the full
horizontal force balance equations, neglecting flexure (England & McKenzie 1982; England & Houseman 1986; England & Molnar 1997;

Flesch et al. 2001):
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where the over bars represent depth integration. The terms on the right-hand sides of eqs (5) and (6) constitute body-force-like terms,
the first terms representing horizontal gradients in GPE per unit area, and 7.,(L) and t,,(L) representing tractions, arising from density
buoyancy-driven mantle convection, applied at the base of the thin sheet at depth L. We do not quantify the contributions of 7,,(L) and 7,,(L)
here, but have addressed them elsewhere (Ghosh et al. 2008).

The thin sheet approximation also implicitly assumes that vertical variations in horizontal velocity are small, or that one of the principal
axes of the stress or strain rate tensor is close to vertical. The presence of a basal traction boundary condition in (5) and (6), associated with
a deeper mantle density buoyancy contribution, calls for the need to evaluate the validity of this assumption. If one principal axis is close to
vertical, then depth integrals of shear stress should be small in comparison with depth integrals of horizontal deviatoric stress. Using 5 MPa
for o,,(L), and assuming a linear gradient of o,,(L), such that it is zero at the surface, the depth integrals of o,,(z) are 2.5 x 10" Nm~"'. This
is about 10 per cent of the magnitude of the depth integral of horizontal deviatoric stress in the lithosphere (Ghosh et al. 2008). Therefore,
even in the presence of basal tractions of significant magnitude, the assumption that one of the principal axes is near-vertical appears to be
valid.

The forcing terms in (5) and (6) are constrained by observations. For example, GPE per unit area is constrained by topography and
seismically defined crustal thicknesses (Crust 2.0 [G. Laske ef al., Crust 2.0: A new global crustal model at 2 x 2 degrees, 2002, available
at http://mahi.ucsd.edu/Gabi/rem.html]) and tractions can be constrained by self-consistent circulation models that match plate motions,
dynamic topography and geoid (e.g. Wen & Anderson 1997). Depth integration over the entire plate thickness is indicated by bars over the
total stress and deviatoric stress terms, o;; and 7;;, respectively. The vertically integrated vertical stress, &.., which is the negative of GPE per
unit area is given by

L z L
G = — / h [ / h p(z')gdz’]dz . / (L =2p()edz ™)

based on a reference level of depth L (Jones et al. 1996). Here, p(z) is the density, L is a constant depth base of thin sheet, /4 is the topographic
elevation and g is the acceleration due to gravity.
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3 METHOD FOR SOLVING THE FORCE BALANCE EQUATIONS

The deviatoric stress field solution that we obtain is the mathematically unique solution that both balances the body force distribution (GPE
differences) and provides a global minimum in the second invariant of stress [following Flesch ez al. (2001)]. We also take into account weak
plate boundaries and strong plates, as discussed further. Solutions to (5) and (6) for T; can be obtained, given distributions of ")gf and 7
with 7,,(L) and 1,,(L) set to zero (e.g. Flesch et al. 2001; Ghosh et al. 2006). Alternatively, solutions can be obtained given distributions of

35,

Tx2(L), 7,,(L), with gradients in GPE set to zero. The contribution from basal tractions can simply be added to the contribution from GPE
differences to obtain the full stress field (Ghosh ez al. 2008). This motivates our study to correctly quantify the global solution associated with
GPE distribution to better understand the full global solution that has contributions from density variations at all depths.

Previously, most authors had used the geoid surface (sea level) as the reference level for calculating GPE (Fleitout 1991; Coblentz et al.
1994; Jones et al. 1996; Zoback & Mooney 2003), in which case,

L
6’22/ = f p(Z)gZ dz =6, + LGZZ(L)' (8)
—h

Thus, for areas in which o,,(L) is a constant, the choice of reference level is irrelevant (Haxby & Turcotte 1978). However, this reference level
yields significantly different values from that obtained using (7) when the pressure, o,(L), at the reference level L is non-uniform, as we discuss
in a later section. We use both the Crust 2.0 model and the EGM96 geoid model (available from NIMA at http://164.214.2.59/GandG/wgs-
84/egm96.html) to calculate GPE. We show that the latter can only be used as a proxy for GPE if the pressure or vertical stress at the base of
the layer of integration is globally uniform.

We use a finite element method (described further) to solve the 3-D force balance equations over a global grid of 2.5° x 2.5° for the
spherical case, neglecting horizontal basal tractions, to quantify the contributions to deviatoric stresses arising from GPE differences. We
minimize the functional (after Flesch et al. 2001):
1= /S i[mfaﬁ +72,1dS + /Szxa[a‘%ﬂ(faﬁ +8usy) +

96,

]ds, ©)
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where s the relative viscosity, T, is the vertically integrated horizontal deviatoric stress, T, = Tyx + Ty, Ao is the horizontal component of
the Lagrange multiplier for the constraint to satisfy the two force balance differential equations, &.. is the vertically integrated vertical stress
(GPE per unit area) and S represents area of the entire Earth’s surface. In Flesch ez al. (2001), u was assigned a value of 1. We assign variable
values to 1 to approximate weak plate boundary zones and strong plates. This is done in two ways. In the first case, an inverse relationship
between strain rates (from Kreemer et al. 2003) and relative viscosities, u, is assumed (Fig. 1a). The relative viscosities of the deforming
plate boundary regions are obtained by assigning a reference viscosity to the moderately straining region in western North America with a
strain rate of 1.5 x 10~7 yr™! via the relationship:

1—1+<1 1) E? (10)
123 Mref Erzef7

where ji.r is the viscosity corresponding to the above-mentioned area, £? = Z(éf.x + éf,y + é)fy + é:x€)y), Where é,, €,, and €, are strain

rates from Kreemer ef al. (2003), and E2; is the reference value for £?, corresponding to the value for pu.r. The lowest viscosities occur
along the mid-oceanic ridges, whereas relatively higher viscosities occur in the deforming continental areas (Fig. 1a). The rigid plates (blank

regions) have the highest viscosities with a u value of 1. We test different values for the reference viscosity, pt.f, such as 1/3, 1/30, 1/300

and 1/3000, where the reference region in western North America is 3, 30, 300 and 3000 times weaker than the plates, respectively. The
viscosity structure giving rise to the deviatoric stress field that matches the deformation indicators best is chosen. Taking into account the
above viscosity variations yields a focusing of stresses within the plates and fits well the observed SH ,,x orientations in most places within
the plates (Zoback 1992).
The second way takes into account the dependence of effective viscosities on lithospheric thickness in addition to strain rates (Fig. 1b).
The viscosity, i/, in this case is given by
1

1
/:7 d :7L/ h N 11
=100 _hu z 100( +hp an

where L’ + & is the thickness of the lithosphere and u are the strain rate dependent viscosities. We consider both types of viscosities (eqs
10 and 11) in our models. However, all the figures are based on viscosities using the first method (Fig. 1a). Note that here L’ is no longer
constant; the variable base of the lithosphere is taken into account. In the case where GPE is calculated with a reference level of 100 km,
the maximum value of L' is fixed at 100 km. Therefore, in this case, our depth integrals do not encompass the deeper lithospheric keels, but
take into account the variable depths of the oceanic lithosphere. However, we do address a case where L’ = 270 km, a depth great enough to
include the keels. Note, in (11), the lithosphere thickness is normalized by a reference thickness of 100 km. Areas deforming at the same rate
will have different viscosities based on lithospheric thickness: thicker lithosphere will be stronger than lithosphere that is less thick.
We minimize (9) with respect to 7,4 using the variational principle (Morse & Feshbach 1953), which then yields the relation

1(0hy = OAp
_a = - N 12
fap 2<8xﬁ + Bxa> (12)
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Figure 1. Logarithm of relative viscosity distribution for all the plates based on (a) strain rates from GSRM and (b) both strain rates and lithospheric thickness.
The white areas represent intra-plate regions with relative viscosity 1. A reference viscosity of firer ~ % is chosen at the moderately fast straining western
North America (1.5 x 10~7 yr=!). Areas with higher viscosities than pf are deforming at a slower rate.

where 7.4 has the same relation with the vector of Lagrangian multipliers as does the strain rate, é., to the velocity vector. Substituting T,z
from (12) into the J functional below (Flesch et al. 2001) and then minimizing the functional J with respect to the Lagrange multipliers yields
the force balance equations that the Lagrange multipliers have to satisfy.

T

= obs = obs
Tex oLy Tex D7
_ - _ obs -1 = _ obs
J = ./s Tyy o0 V Tyy o ds, (13)
= obs = obs
Ty (20 Toy o)

where 7., T,, and T, are the vertically integrated deviatoric stresses that we are solving for, V-1 is the covariance matrix (see Appendix A),
and @ = @;BS = —%622 and @;1;5 = 0 are potentials whose spatial derivatives involve body force equivalent terms. Minimizing J with
respect to the Lagrange multipliers provides a unique solution to the force balance equations that corresponds to the global minimum in the
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second invariant of deviatoric stress (e.g. the functional in (9) is also optimized (Flesch et al. 2001)). The methodology of minimizing J in
(13) is analogous to solving the Weak formulation of the linear viscous problem, with generally laterally variable linear viscosity, where the
Lagrange multipliers in (12) hold the mathematical equivalence with velocity. The basis functions for the Lagrange multipliers are higher
order elements on the 2.5° x 2.5° square grid involving the Bessel form of bi-cubic spline interpolation (de Boor 1978; Beavan & Haines
2001) and A, = Ag = 0 on the boundary 9S. This boundary is defined as two ring segments: one at 88°S and one at 87°N.

A full benchmarking exercise using this finite element methodology is described in the supplementary appendix of Ghosh ef al. (2008),
where they have recovered the horizontal components of the deviatoric stress field associated with full degree 12 3-D convection models for
the globe. The full 3-D convection model has the long-wavelength components of 3-D flow in all of the present-day subduction zones. Ghosh
et al. (2008) show that the finite element method can recover these stress fields given only the body force equivalent terms from the full 3-D
model; it is not necessary to know the absolute viscosity magnitudes used in the 3-D convection models to recover stresses using this finite
element method. The body force equivalent terms derived from the 3-D convection model, and then separately applied in the thin sheet finite
element model, are the depth integrated vertical stresses, or GPE, including the contribution from dynamic topography and the horizontal
traction output at the reference level, L (see Ghosh ez al. 2008). Similarly, Klein et al. (2009) have shown that if the relative viscosity variations
are known, then the exact deviatoric stress field can be recovered given known body force equivalents.

4 GPE FROM CRUST 2.0

We use the crustal thicknesses and densities from the Crust 2.0 model to calculate GPE per unit area. For the oceanic regions, we use the
cooling plate model based on ocean floor age data (Miiller ef al. 1997) and with revised parameters from Stein & Stein (1992) to define
densities there. Beneath the continental lithosphere, the densities of the last layer of the crustal model are replaced by an upper-mantle density
of 3300 kgm™>. The reference level, L, is chosen as 100 km (after Jones et al. 1996) in this particular case. Where no seafloor age data are
provided, the densities were not adjusted and the original Crust 2.0 model densities, together with the model crustal thickness and elevation
data, were used to define GPE. We also use a deeper reference level to take into account the density buoyancies associated with cratonic
roots, which we discuss in a later section. Because water and ice are unable to transmit significant tectonic shear stresses, effects of ice
and water layers are excluded from our GPE calculation. However, we take into account the pressure exerted by water and ice layers that
constitutes a boundary condition in the computation of the GPE integral (eq. 7). The GPE calculated from crustal thickness estimates of
Crust 2.0 show high values occurring at high elevation regions like the Andes, western North America, eastern Africa, Tibetan plateau, as
well as at the mid-oceanic ridges, with the maximum GPE occurring at the Tibetan plateau (Figs 2 and Cla). Lower elevation regions like the
ocean basins and topographically low continental areas exhibit low GPE. The resultant depth integrated deviatoric stress magnitudes show
a maximum depth integral of deviatoric tension at the Tibetan plateau (~2 x 10'> Nm™!) (Fig. Cla) and compressional deviatoric stresses
in the older oceans and low elevation continental regions (~1-1.5 x 10> Nm™"). The mid-oceanic ridges are in deviatoric tension as are
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Figure 2. Global distribution of vertically integrated horizontal deviatoric stresses and GPE calculated from the uncompensated Crust 2.0 model. Tensional
deviatoric stresses are shown by red arrows whereas compressional deviatoric stresses are shown by black arrows. Length of the arrows are proportional to
the magnitude of stresses. Strike-slip regions are indicated by one tensional and one compressional pair of arrows. Areas having high GPE are in deviatoric
tension whereas areas having low GPE are in deviatoric compression. GPE on scalebar is in Newton metre ™! and corresponds to the depth integral of o, from
the Earth’s surface to the reference level L at 100 km below sea level.
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topographically high areas that have higher GPE values. Moreover, the depth integrated deviatoric stresses for the Indo-Australian plate agree
with the SHy,x directions of the WSM (Zoback 1992; Reinecker et al. 2005) and those derived by Sandiford et al. (1995). Western North
America is dominated by tensional stresses whereas the rest of the continent east of the Rocky Mountains undergoes deviatoric compression
(Figs 2 and C1b). The Aegean region is dominated by strike-slip style of deformation (Fig. Clc). The stress pattern in the Central Indian
Ocean region (Fig. C1d) exhibits a rotation of the axes that matches the stress observations from the WSM in that region (Zoback 1992;
Reinecker et al. 2005). The stresses in eastern Africa show pure tension (Fig. Cle) with stress magnitudes decreasing southward.

It should be noted that the GPE values, and the deviatoric stresses, of the low elevation portions of old continents and old oceans are
similar (Fig. 2). This is because GPE is a function of both elevation and density. Although the continents have a greater elevation than the
oceans, the continental crust is in general less dense than the oceanic crust. Moreover, as the oceanic crust is thinner, a larger amount of
denser mantle is included in the depth integral of vertical stress in oceanic lithosphere in comparison to the depth integral through continental
lithosphere.

The above result for GPE and corresponding deviatoric stress solution is for an uncompensated Crust 2.0 model. That is, one interpretation
of'the variable pressure at the reference level, L, is that, in addition to the contribution from lithosphere buoyancies, this model encompasses the
effect of radial tractions acting at the base of the lithosphere from deeper mantle density buoyancies. To investigate the effect of compensation,
an isostatic solution was computed by compensating our model [equal pressure, f_Lh pgdz = o,.(L), at the reference level L]. The concept of
isostatic equilibrium dates back to the 19th century. The Airy model of isostatic compensation (Airy 1855) involves a constant density layer
with variable thickness while the Pratt model (Pratt 1855) is based on a constant thickness layer of variable density. What occurs on Earth is
possibly a combination of these two end-members, with different regions exhibiting each mechanism in varying degrees. The vertical stress
at the reference level, L, given by

L
o.(L) = / s (14)

can be equilibrated either by adjusting the density of the upper mantle, p(z), or by adjusting the elevation, 4, of the crustal blocks. In the
latter case, the adjustment constitutes the removal of the inferred dynamic topography that has resulted from radial tractions applied at the
reference level, L, [which is the inferred source of the variable values of o,,(L)].

Upper-mantle densities are adjusted with respect to an average vertical stress o ,(L) for the continents and oceans. Although the resultant
GPE differences and deviatoric stress solutions (Fig. 3) show values that are 10-20 per cent lower than the uncompensated case, the overall
style of deviatoric tension and compression remain unchanged.

In the second method, compensation is achieved by adjusting the elevations based on an average vertical stress, o,,(L ), for the continents
and oceans, while keeping the densities of the mantle unchanged. Thus, elevations of the crustal blocks are lowered or raised according to
whether the actual vertical stress at reference level L is greater or less than the global average vertical stress there. Compensation by density
adjustment does not acknowledge the existence of dynamic topography (discussed later), whereas in the latter case (Fig. 4), the entire deviation
from constant pressure at the reference level, L, is assumed to be associated with dynamic topography. The deviatoric stress field in Fig. 4,
therefore, represents the theoretical contribution of lithosphere buoyancies alone, with dynamic topography removed under the assumption
that all variations in vertical stress at the reference level are due to dynamic topography. What occurs on Earth is a combination of these two
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Figure 3. Global distribution of vertically integrated horizontal deviatoric stresses and GPE calculated from Crust 2.0, compensated by density adjustment.
The range of GPE values, as well as the absolute magnitudes of deviatoric stresses, decrease compared to the uncompensated (in Fig. 2) case, but the overall
pattern remains similar to that in Fig. 2.
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Figure 4. Global distribution of vertically integrated horizontal deviatoric stresses and GPE calculated from Crust 2.0, compensated by elevation adjustment.
The range of GPE values, as well as the absolute magnitudes of deviatoric stresses, decrease compared to the uncompensated (in Fig. 2) as well as the other
compensated case (Fig. 3), but the overall pattern remains similar to that in Figs 2 and 3. Because compensation is achieved via elevation adjustment, Fig. 4 is
the theoretical response of lithosphere from internal buoyancies, with the influence of dynamic topography removed. Therefore, the GPE differences for young
versus old oceanic lithosphere in this model arise only from the elevation and density changes associated with lithospheric cooling.

end-members. On comparing the GPE differences and deviatoric stress magnitudes for the two compensated cases (Figs 3 and 4), we find
that magnitudes of both are reduced considerably in the latter case (compensation by elevation adjustment), although the deviatoric stress
patterns are similar. Due to increasing density moment as a function of mass anomalies considered at increasing distances away from the
reference level, L, (discussed in detail in Section 7), near-surface densities have a greater impact on the change in GPE than do deeper density
variations. This means that adjustment of elevation has a greater impact on GPE differences, and associated deviatoric stress magnitudes, than
the adjustment of density in the mantle. Another way of interpreting this result is that, assuming flexure to be negligible at long wavelengths,
if horizontal variations in o.,(L) are inferred to be associated with mantle flow or dynamic support, then the resulting dynamic topography
is a major factor contributing to lithospheric GPE differences and deviatoric stresses associated with these GPE differences (compare Figs 2
and 4).

As a way of investigating the role of weak plate boundaries, we also compute deviatoric stresses with a uniform lithospheric viscosity (u
= 11in eq. 9) based on an uncompensated Crust 2.0 model. The resultant deviatoric stresses (Fig. 5) have magnitudes similar to those in the
uncompensated case. However, the plate boundaries, in this uniform viscosity case, have higher stresses as compared to the plate boundaries
in all the other cases (cases with lateral viscosity variations). When compared with the uncompensated result with lateral viscosity variations
(Fig. 2), the stress patterns appear similar in a few areas, but differ substantially in many regions, particularly in the continents. Furthermore,
the arcuate feature of compressive deviatoric stresses throughout the Indo-Australian plate boundary regions (observed in the WSM) is only
achieved when lateral viscosity variations in the lithosphere are taken into consideration (refer to Fig. C1d and compare with Fig. 5). Lateral
strength variations, with weak zones corresponding to the location of today’s plate boundary zones, and stronger zones corresponding to
position of the plates, therefore, plays a profoundly important role in affecting the deviatoric stress field.

5 DEEPER LITHOSPHERIC DENSITY BUOYANCIES

As mentioned earlier, we perform depth integrals to 100 km that is sometimes assumed to approximate the boundary between the non-
convecting lithosphere and the convecting mantle. However, the base of the lithosphere is variable in depth due to the presence of continental
keels, depth variations for different aged oceans, etc. Accounting properly for this variable depth involves sophisticated methods that we
do not attempt in this paper. One can approximate the influence of variable bottom lithosphere, however, by integrating down to a constant
reference level, equal to the depth of the deepest lithosphere. However, this can only be achieved under the assumption that there is no
buoyancy-driven mantle convection acting on the variable base of lithosphere, and no dynamic topography. This implies total compensation;
that is, equal vertical stress at the depth of the reference level (bottom of the deepest lithosphere).

To take into account the effects of the deeper density buoyancies associated with the lithosphere, the reference level, L, is extended
to a greater depth. Based on the lithospheric thickness model of Conrad & Lithgow-Bertelloni (2006), we take L to be at the depth of the
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Figure 5. Same as Fig. 2, but with laterally uniform lithospheric viscosity. Note that significant changes occur in deviatoric stress orientations in many of the
plate boundary zones (western North America, Mediterranean, Southeast Asia) as well as within the Indo-Australian plate region.

deepest lithosphere (~270 km). Integrating to a depth of ~270 km captures a significant portion of the asthenosphere. However, a constant
asthenospheric density outside of the very deep cratonic areas makes no contribution to the deviatoric stress field.

To achieve compensation at L, we adjust the densities of the subcrustal layer (layer between the base of the crust and the base of the
lithosphere) with respect to an average vertical stress at 270 km depth for continents and oceans. The asthenosphere layer (layer between the
base of the lithosphere and the reference level, L) is assigned a constant density of 3300 kg m—3. Based on these adjusted densities, the GPE
and the corresponding deviatoric stress field are calculated with viscosities varying as a function of both strain rates (Fig. 1a) and combined
strain rates and lithospheric thickness (Fig. 1b).

The absolute GPE values naturally increase when L is at a greater depth (Fig. 6). However, the GPE differences, and consequently the
deviatoric stress magnitudes, are lower than the corresponding model compensated at 100 km (Fig. 3). The overall depth integrated deviatoric
stress pattern in Fig. 6 is similar to the previous cases (Figs 2—4). The lower deviatoric stress magnitudes may indicate the influence of a lower
density (less than 3300 kg m™3) subcrustal lithospheric layer used in most of the regions to achieve compensation.
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Figure 6. Same as Fig. 4, but compensated at the depth of the deepest lithosphere (~270 km).
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6 GPE FROM GEOID
We also calculate GPE from the EGM96 geoid data set. Geoid anomalies have been used to calculate GPE by Coblentz et al. (1994), Sandiford
& Coblentz (1994), Flesch et al. (2000, 2001). Coblentz et al. (1994) calculated geoid anomaly as

26
AN = - Ay, (15)
gZ

where G is the universal gravitational constant, g is the acceleration due to gravity and AU is the GPE from geoid (given by (Turcotte &
Schubert 1982))

ANg?
27G

L
AU = —/ Ap(z)gzdz = — (16)
0

However, this relationship is true only if isostatic compensation prevails everywhere at the reference level L (Haxby & Turcotte 1978).
Otherwise, significant errors will be introduced if the geoid is used to infer GPE when dynamic topography is present. Moreover, the geoid
anomalies, and hence the computed GPE values, are also sensitive to the filtering techniques. Note that the integral in (16) is not equivalent
to the vertical integral of vertical stress, o,,, or GPE, which is correctly shown in eq. (7). Instead,

L 0 L
/ p(2)gzdz = 6., / p(zgdz+ L f p()g dz. (17)
0 —h —h

Hence, the geoid can only be used as a proxy for GPE if the right most integral in (17) is a constant at reference depth L, meaning there is no
dynamic topography (Flesch et al. 2007). Note that if the last term in (17), the pressure at reference depth L, varies over long wavelengths,
then the geoid can be used as a proxy for GPE over length scales where those lateral variations in pressure are small. For example, for regional
scale models such as North America, it may be appropriate to use the geoid as a proxy for GPE (Humphreys & Coblentz 2007).

For comparison purposes, we evaluate the deviatoric stress field associated with GPE inferred from the geoid to quantify the differences
from a solution directly inferred from crustal structure. We use the EGM96 geoid model to approximate the GPE, with reference to a
mid-oceanic ridge column of lithosphere (after Coblentz et al. 1994). Like Flesch et al. (2001), and Jones et al. (1996) before them, we filter
the geoid such that terms below degree and order 7 are removed with a cosine taper to degree and order 11. A constant crustal and mantle
density of 2828 and 3300 kg m~ are assumed (after Flesch ef al. 2001). The deviatoric stresses are computed in the same way as from the
Crust 2.0 model.

There are many differences between the deviatoric stresses calculated from the geoid data set and those from the Crust 2.0 model. Both
GPE differences and the deviatoric stress field (Fig. 7) are in general lower than those from the Crust 2.0 solutions. The deviatoric tension
in western North America does not show up in the geoid solution. For the geoid solution, deviatoric compression in Northern Europe, the
Southeast Asian subduction zone and the North American continent change to deviatoric tension, or strike-slip style of deformation. The
mid-oceanic ridges in the geoid case constitute a much weaker signal than in the Crust 2.0 solutions. The matching of deviatoric stresses for
the Indo-Australian plate with the SH,,,x directions of the WSM is considerably poorer for the geoid case. Similar differences exist between
the geoid and uncompensated solution (Fig. 2), with the differences in magnitudes being greater.
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Figure 7. Global distribution of vertically integrated horizontal deviatoric stresses and GPE inferred from the EGM96 geoid data set.
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7 REFERENCE LEVELS

For an uncompensated case, choice of reference level for the calculation of GPE has significant impact on the inferred deviatoric stresses
associated with internal density buoyancy distributions in the lithosphere. Gravitational potential energy values must be computed with respect
to some reference level and, depending on which reference level is chosen, the calculated GPE, and the associated deviatoric stresses, will
change if the topography is uncompensated. Historically, there has been a precedence of calculating GPE with the surface of the geoid (sea
level) as the reference level (Fleitout & Froidevoux 1982; Fleitout 1991; Coblentz ef al. 1994; Jones et al. 1996; Zoback & Mooney 2003).
Fleitout (1991) gave the ‘moment law’:

L
/ Ao..(z)dz = Smgd, (18)
0

which states that the influence of an intralithospheric mass anomaly is proportional to its moment, the product of its amplitude §mg and depth
d. This means that the greater the depth of the mass anomaly, the larger the impact on the GPE and the associated stress field. If the sea
surface is treated as reference level, the above relation can be re-written as

L L
/ Ao, (z)dz = g/ Ap(z)z dz. (19)
0 0

On the other hand, if we consider a constant depth level of L that is the maximum depth of integration, as the reference level, then the moment
equation will be modified to

L L z L
/0 Ao,,(z)dz = /; |:/(; Ap(z')gdz ] dz = /0 (L —2)Ap(z)gdz = dmg(L — z). (20)

This implies that the near-surface density anomalies will have a greater effect on GPE, and the corresponding deviatoric stress field, than
deeper anomalies within the portion of the lithosphere considered in the depth integrals. However, the differences in reference level are
only relevant when topography is uncompensated. In the compensated case, the term in (20), 0,,(L), is a constant and the remaining term,
fOL zAp(z)gdz is identical to that in (19), where the reference level is sea level. Although the inferred value of GPE is different, depending on
whether (18) or (20) is used, because deviatoric stress depends only on the gradient in GPE, (18) and (20) yield the same result when o.,(L)
is a constant. However, when vertical stress o,,(L) varies at the reference level, L, however, use of (18) and (20) will yield different estimates
of deviatoric stress. Recall that the thin sheet equations arise from depth integration of the full 3-D force balance equations, with limits of
integration from the surface, down to the reference level, L. The GPE term thus arises from the depth integration of the vertical stress, &... To
remain consistent with the thin sheet approach, the only appropriate form for GPE is therefore equation (20), where the reference level is at
depth L.

8 DEVIATORIC STRESS MAGNITUDES

We argue that many previous calculations of depth integrals or depth averages of deviatoric stress magnitudes in Tibet as well as in the
mid-oceanic ridges, have been overestimated (Ghosh ef al. 2006). Maximum difference in depth integrals of deviatoric stress between Tibet
and surrounding lowlands (Tcy | 7iper — Tex liowtands ) is around 3.5-4 x 10'2 N'm~!, which is about a factor of two lower than previous estimates
of deviatoric stress difference (~6-7 x 10> Nm™") there (Molnar & Lyon-Caen 1988; Molnar et al. 1993). Also, the ridge-push force, or
the vertically integrated deviatoric stress magnitudes associated with the mid-oceanic ridges in our solution (~1.5 x 10'> Nm™"), is lower
than previous estimates of ridge-push (~3 x 10'> Nm™!) (Harper 1975; Lister 1975; Parsons & Richter 1980). This difference in deviatoric
stress magnitudes from previous estimates can be attributed to two factors: (i) either a 2-D approximation of the thin sheet applied along
a single profile and/or (ii) the form assumed for the hydrostatic state of stress, or both (Dalmayrac & Molnar 1981; Molnar & Lyon-Caen
1988). We use the term hydrostatic stress to refer to the reference pressure, P, subtracted from the total stress to obtain the deviatoric stress:
1;; = 0;; — P§;;. If P is assumed to be the lithostatic or vertical stress, o .,, then the deviatoric stress is defined as t;; = 0;; — 0, §;; (which
we call 2-D definition of deviatoric stress). Such an assumption implies that the vertical component of the deviatoric stress, 7.., is equal to
0, which is entirely a special case, and is unlikely to be applicable in many areas (Engelder 1994). If P is defined as the mean stress, then
deviatoric stress becomes t; = o — %0;(;{6,] (which we call a 3-D definition of deviatoric stress), with the constraint 7., + 7,, + 7.. = 0
(Flesch et al. 2001).

The largest estimates of deviatoric stresses have resulted from solutions to simplified 2-D thin sheet equations, applied along a single
profile, along with the assumption that hydrostatic stress P is equal to the vertical stress, and 7., = 0. In that case, the two horizontal force
balance equations reduce to a single equation:

00,y
= =0, (1)

ox
which, after using a 2-D definition of deviatoric stress, gives T,, = —d..+ a constant C as a solution to the depth integrated force balance

equation. That is, the depth integrated deviatoric stress magnitude equals GPE. On the other hand, using the same force balance equation, but
a definition of hydrostatic stress as the mean stress, yields 7,, = — %522—{— a constant C, a magnitude of a factor of two lower than the previous
case. The reason for lower stresses using the 3-D definition of deviatoric stress is that some of the potential energy differences get absorbed
in the vertical term T.., which is zero in the case with the 2-D definition.
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Using the 3-D force balance equations, one of the horizontal deviatoric stresses, say ,,, can be given as

PP =¢ —l(o +0,, +0..) (22)
xx — Yxx 3 xx vy zz

and

TXZXD = Oxx — Ozz, (23)

according to the 3-D and the 2-D definitions of deviatoric stress, respectively. From this, the relation between the 2-D and the 3-D deviatoric
stresses can be written as

0 =280+ 70, (24)
and similarly,

=2D =3D =3D

T, =27 + 1 (25)
=10 (26)

The reason for still lower stresses by using the full 3-D equations is the presence of the horizontal terms 7,, and 7., which are absent in the
case represented by a profile (eq. 21). Solutions using the full 3-D force balance equations, but a 2-D definition of deviatoric stress, yield
deviatoric stress magnitudes a factor of two or more higher than our previous 3-D solutions (Fig. 8).

One importance of evaluating the correct magnitude of deviatoric stresses lies in the fact that the onset of deformation of the Indian
ocean lithosphere has been explained by the high deviatoric stress magnitude (~8 x 10'> Nm™!) in that area associated with the large GPE
differences between Tibet and the Indian Ocean (Molnar ef al. 1993). According to Molnar et al. (1993), a sediment laden oceanic lithosphere
would be capable of buckling at a deviatoric stress magnitude of ~4.4 x 10'> Nm~'. We do not disagree with this. However, the vertically
integrated deviatoric stress magnitude in that area, associated with the large GPE differences between Tibet and surrounding Indian Ocean, is
not more than ~1.5-3 x 10'>2 Nm~' (Fig. 2, C1d). Therefore, deviatoric stresses required to produce the buckling must arise from additional
sources other than GPE differences alone. Moreover, the magnitude of the ridge-push force has been used to constrain the intra-plate stress
magnitude of the Indo-Australian plate (Reynolds ef al. 2002) and to infer the degree of slab-plate coupling for the Java and Sumatra slabs
(Sandiford et al. 2005). However, GPE differences between ridge and surrounding regions is insufficient to cancel the N—S deviatoric tension
in Tibet associated with the excess GPE of Tibet (Figs 2—4 and Cla) (Ghosh et al. 2006). Because the total depth integrated deviatoric stress
acting on the lithosphere can be attributed to stress related to (1) GPE differences and (2) horizontal basal tractions arising from deeper
density buoyancies, the insufficiency of the ridge-push force in balancing the deviatoric tension at the Tibetan plateau calls for additional
deviatoric stresses of magnitude ~2-3 x 10'> Nm™! associated with driving shear tractions at the base of the lithosphere in the Indian plate
region (Ghosh et al. 2008). The density buoyancy distribution giving rise to these driving tractions is related to the long history of subduction
of the Indian and Australian plates (Lithgow-Bertelloni & Richards 1995; Wen & Anderson 1997).
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Figure 8. Global distribution of vertically integrated horizontal deviatoric stresses, calculated from an uncompensated Crust 2.0 model, based on a 2-D
definition of deviatoric stress (eqs 24-26). The stress magnitudes are a factor of two higher than all our previous solutions, calculated using a 3-D definition.
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9 COMPARISON OF CALCULATED DEVIATORIC STRESSES WITH THE STRAIN
RATE TENSOR FIELD IN THE PLATE BOUNDARY ZONES

We introduce a quantitative way of testing our modelled deviatoric stresses with strain rate information from the Global Strain Rate Map
(Kreemer et al. 2003; Holt et al. 2005). The Global Strain Rate Map (GSRM) is a velocity gradient tensor field solution for the entire Earth’s
surface. It is a high-resolution data set along the Earth’s diffuse plate boundary zones. The GSRM model is based on 5170 GPS stations as
well as Quarternary fault slip rate data. Our calculated deviatoric stress tensor is scored with the strain rate tensor from GSRM and we seek
to match direction of principal axes as well as style of faulting. We define a correlation coefficient (Flesch et al. 2007)

-1< Z(e-t)AS/( D (E)AS * Z(Tz)AS> <1 @27

areas areas areas

where

E=.[e2 +e +e tel +e = \/26§x + 266y, + 262, + 262,

xy

yy

_ 2 2 2 2 2 _ 2 2 2
T - \/Txx + T + Tzz + Txy + Tyx - \/z.txx + 27”-"-".’:}’}’ + 2Tyy + 2Txy
and

€T =26, Tey + €xxTyy + €y Tex + 265, Ty + 264, Ty,

E and T are the second invariants of strain rate and deviatoric stress, respectively, €;; are strain rates from Kreemer et al. (2003), AS is the
grid area and 7;; are the calculated vertically integrated deviatoric stresses. Normalization of € - 7 by E and T in eq. (27) ensures that the
correlation coefficient has no dependence on stress or strain rate magnitudes. The correlation coefficient only depends on a match of the
deviatoric stress tensor to the inferred style of faulting (relative magnitude of extensional and compressional strain rate principal axes) and
the match to the directions of principal axes between the stress and the strain rate tensors. A maximum correlation coefficient of 41 indicates
perfect fit. That is, the stress tensor and the strain rate tensor are exactly the same in terms of style and direction of principal axes, whereas a
coefficient of —1 indicates anti-correlation. For example, if the observed strain rate shows thrust faulting in an area, whereas our calculated
deviatoric stress predicts normal faulting in the same area, then the correlation coefficient will predict a value of —1. A value of 0 will imply
that the stress and the strain are uncorrelated. That is, for example, our modelled stresses predicting strike-slip faulting in an area of thrust or
normal faulting, where the compressional and extensional principal axes differ from those in the GSRM by 45°.

The stress predictions from the different crustal and geoid models (Crust 2.0 and EGM96 Geoid) are compared with the strain rate
tensor field from GSRM. Such a comparison provides a quantitative means of evaluating the contribution that the GPE differences make to
the total stress tensor field within the plate boundary zones. A poor match, for example, highlights regions where additional stress component
associated with deeper density buoyancies, and associated tractions, are necessary to explain the deformation indicators, and hence total
deviatoric stress field. Higher correlation coefficients indicate a closer match between the stress tensor and strain tensor fields. Amongst the
different models that we test, the best fit to the deformation indicators is given by the one calculated from Crust 2.0 model, compensated
by density adjustment at 100 km, and with viscosities dependent only on strain rates (with reference viscosity ~1/30, Fig. 3). The overall
correlation for this model is 0.60 (Table 1). Nevertheless, individual regions react differently to different models. For example, for a 100 km
reference level, the uncompensated model provides the best fit in areas like Eastern Africa and the Mediterranean (Tables 1 and 2, Figs 9 and
C2c¢,e), whereas in regions such as the Andes, Central Asia and to some extent the Western Pacific, the Indo-Australian plate boundary zone

Table 1. Correlation coefficients obtained from a comparison between different deviatoric stress models with the strain rate tensor field from
the GSRM model (see eq. 27) with reference level, L = 100 km and viscosities varying as a function of strain rates only (Fig. la).

Region of Number Mref ™~ % Mref ™~ % Mref ™~ ﬁ Mref ™~ ﬁ
interest of areas U CD CE U CD CE U CD CE U CD CE
Western 132 0.39 0.66 0.74 0.53 0.72 0.75 0.44 0.68 0.75 0.45 0.70 0.73
North America

Andes 89 0.14 0.60 —0.04 0.25 0.69 0.06 0.15 0.54 —0.04 0.22 0.67 0
Eastern Africa 164 0.40 0.09 0.10 0.31 —0.04 —0.06 038 0.16 0.06 040 —0.01 0.04
Mediterranean 83 0.52 044 0.49 0.55 0.52 0.50 0.55 0.54 0.49 0.50 0.48 0.46
Central Asia 187 026 0.33 0.14 0.32 0.41 0.32 031 042 0.30 0.30 0.38 0.27
Indo-Australian 174 0.68 0.71 0.70 0.69 0.77 0.74 0.64 0.61 0.67 0.60 0.70 0.67
plate boundary

Mid-oceanic ridges 292 0.82 0.86 0.87 0.79 0.85 0.87 0.77 0.83 0.84 0.66 0.76 0.76
Western Pacific 109 048 0.62 0.56 0.51 0.60 0.53 042 0.58 0.42 0.46 0.57 0.52
Southeast Asia 167 048 0.62 0.59 0.61 0.68 0.65 0.54 0.66 0.58 0.55 0.65 0.61
Total 1944 0.51 0.57 0.51 0.54 0.60 0.52 0.50 0.58 0.49 0.50 0.56 0.49

Note: The abbreviations U, CD and CE denote models that are uncompensated, compensated by density adjustment and compensated by
elevation adjustment, respectively.
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Table 2. Same as Table 1 but with viscosities varying as a function of both strain rates and lithosphere thickness (Fig. 1b).

Region of Number Href ~~ % Mref ™~ % Href ™~ ﬁ Href ™~ ﬁ
interest ofareas U CD CE U CD CE U CD CE U CD CE
Western North America 132 047  0.65 0.71 056  0.69 0.72 052  0.69 0.75 044 0.66 0.68
Andes 89 048 0.83 036 051 0.86 0.37 044 0.84 024 041 0.83 0.23
Eastern Africa 164 020 —0.31 -0.27 0.08 —-035 -032 024 -0.17 -0.17 030 -03 —0.18
Mediterranean 83 044 040 044 052 048 0.51 055 0.52 049 050 043 0.49
Central Asia 187 025 0.33 020 033 040 036 037 046 039 029 0.37 0.33
Indo-Australian 174 0.65 0.75 0.70  0.60 0.75 0.68 0.61 0.72 0.69 056 0.68 0.62
plate boundary zone

Mid-oceanic ridges 292 0.70  0.81 0.81 063 0.78 0.78 0.65 0.76 0.76  0.53 0.64 0.65
Western Pacific 109 056 0.63 0.61 058 0.60 0.59 057 0.61 0.57 053 0.58 0.57
Southeast Asia 167 0.57  0.61 0.61 0.66 0.68 0.68 0.63 0.68 0.66 0.61 0.66 0.64
Total 1944  0.50 0.53 049 050 0.54 0.50 052 0.57 0.51 048 0.51 0.47

and Southeast Asia, the best fit is given by a model compensated by density adjustment (Tables 1 and 2). A model compensated by adjusting
the topography, on the other hand, gives the best fit to the strain rate tensor data in western North America, as well as in the mid-oceanic
ridges (Tables 1 and 2). In general, areas of continental deformation such as Central Asia (Fig. C2a), western North America (Fig. C2b) and
the Andes (Fig. 9), including areas such as to the Southeast of Africa (Fig. C2e) yield a poor fit to the deformation indicators. The Central
Indian Ocean (Fig. C2d), on the other hand, shows a very good match.

Models with viscosities varying as a function of both strain rates and lithosphere thickness fare worse when the overall fit is considered
(Table 2), with a highest correlation coefficient of 0.57 (with reference viscosity ~1/300). The overall poor fit could potentially arise from
errors in the lithosphere thickness model. However, some areas, such as the Andes, and to a certain extent Central Asia, Southeast Asia, and
the Western Pacific, exhibit an improved fit when viscosities along plate boundaries are allowed to vary with lithospheric thickness as well.
A lithospheric model with a laterally uniform viscosity structure provides a poor fit to the strain rate tensor data (Table 3) with an overall
correlation coefficient of 0.31.

For models inclusive of deeper density buoyancy within the keels, the only region that undergoes some improvement in fitting is Africa
(Tables 4 and 5, Fig. 6). For all the other areas the fit either degrades or stays unchanged.

The Geoid model displays a poor fit in almost all the areas (Tables 6 and 7) with the exception of the mid-oceanic ridges. However, the fit
to the mid-oceanic ridges is still worse than in the Crust 2.0 case. In fact, the mid-oceanic ridges show high correlation for both the Crust 2.0
and the EGM96 models. The failure of the Geoid model to match the observed deformation in the plate boundaries could be associated with
the sensitivity of the geoid anomalies, and consequently the GPE values, to the filtering techniques. Calculation of GPE from geoid anomalies
also assumes no dynamic topography, as mentioned earlier in Section 6. The assumptions embedded in the use of geoid as a proxy for GPE
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Figure 9. Correlation coefficients between observed strain rate tensors from the GSRM and deviatoric stress tensors, varying as a function of strain rates only,
arising from GPE differences from an uncompensated Crust 2.0 model (Fig. 2).

-40

© 2009 The Authors, GJI
Journal compilation © 2009 RAS



Gravitational potential energy differences 15

Table 3. Correlation coefficients obtained from comparison between deviatoric
stress field from an uncompensated Crust 2.0 model with the strain rate tensor field
from the GSRM model with laterally uniform viscosity in the lithosphere.

Region of interest Number of areas et = 1
Western North America 132 0.08
Andes 89 —0.20
Eastern Africa 164 0.63
Mediterranean 83 0.33
Central Asia 187 0.10
Indo-Australian plate boundary zone 174 0.30
Mid-oceanic ridges 292 0.78
Western Pacific 109 0.09
Southeast Asia 167 0.08
Total 1944 0.31

Table 4. Correlation coefficients obtained from a comparison between different deviatoric stress models with
the strain rate tensor field from the GSRM model with reference level L = 270 km and viscosities varying as
a function of strain rates only.

Region of interest Number of areas Iref ~ % Href ~ % Href ~ 31% Iref ~ ﬁ
Western North America 132 0.44 0.57 0.50 0.50
Andes 89 0.21 0.35 0.22 0.30
Eastern Africa 164 0.45 0.40 0.45 0.43
Mediterranean 83 0.51 0.54 0.53 0.48
Central Asia 187 0.24 0.27 0.26 0.26
Indo-Australian 174 0.74 0.77 0.72 0.73
plate boundary zone

Mid-oceanic ridges 292 0.86 0.84 0.82 0.73
Western Pacific 109 0.52 0.53 0.45 0.49
Southeast Asia 167 0.61 0.66 0.61 0.63
Total 1944 0.55 0.58 0.54 0.54

may therefore only be appropriate for regional scale modelling (e.g. Humphreys & Coblentz 2007), but on a global scale are problematic due
to the importance of dynamic topography.

The low to moderate values of correlation coefficients in many areas imply the inadequacy of lateral density variations within the
lithosphere alone to satisfy the observed deformation. Stresses, arising from density buoyancy-driven basal tractions are required to explain
the observed deformation along the plate boundaries (Ghosh ef al. 2008). Ghosh ez al. (2008) have shown a universal improvement in fit for
all regions when tractions associated with deeper density buoyancies are included. The role and need for such tractions is especially marked
in areas of high GPE, such as Central Asia (Figs 9 and C2a), where nearly pure tension is predicted by the GPE differences, but deformation
yields dominant strike-slip faulting there. The tractions associated with deeper mantle buoyancies integrate over great distances and provide,
for example, the needed compressional deviatoric stresses, which act together with GPE differences to provide total deviatoric stresses across
Tibet and the Andes in accord with deformation indicators (Ghosh et al. 2008).

10 CONCLUSIONS

The two main factors controlling lithospheric stress field are (1) gravitational potential energy differences arising from GPE variations within
the lithosphere and (2) horizontal basal tractions arising from mantle convection, which are coupled to the base of the lithosphere. In this
study, we quantify only the first of the above two factors. We show that dynamic topography likely makes a significant contribution to GPE
differences and the deviatoric stresses associated with these GPE differences (compare Figs 2 and 4). A correct quantification of (1) will
enable us to estimate the bounds on (2), the magnitude of the horizontal basal tractions associated with lithospheric coupling with deeper
mantle circulation. If dynamic topography can be removed from the GPE model (e.g. Fig. 4), then it is possible to infer the relative contribution
of GPE differences arising from lithospheric buoyancies alone and the contributions arising from deeper mantle circulation involving both
radial and horizontal tractions.

We calculate GPE from the Crust 2.0 and the EGM96 geoid models using both uniform lithospheric viscosity and varying viscosities for
plate boundaries as well as intraplate regions and show that laterally varying lithospheric strength is required to match the observed stress and
strain rate pattern. We take into account deeper density buoyancies associated with cratonic roots. We find that inclusion of deeper lithospheric
density buoyancies has little effect on the style and direction of the deviatoric stress field. Moreover, consideration of these deeper density
buoyancies in the keels is based on the premise that there is no buoyancy driven mantle convection and no dynamic topography. A simpler
model excluding the deeper keels fits the deformation indicators better. We clarify the usage of a correct level of reference (maximum depth

© 2009 The Authors, GJI
Journal compilation © 2009 RAS




16 A. Ghosh, W E. Holt and L. M. Flesch

Table 5. Same as Table 4, but with viscosities varying as a function of both strain rates and lithosphere

thickness.

Region of interest Number of areas Mref ~ % Href ~ % Href ~ ﬁ Iref ~ ﬁ
Western North America 132 0.52 0.60 0.56 0.47
Andes 89 0.56 0.60 0.54 0.51
Eastern Africa 164 0.26 0.13 0.27 0.28
Mediterranean 83 0.43 0.50 0.51 0.48
Central Asia 187 0.24 0.29 0.32 0.25
Indo-Australian 174 0.69 0.67 0.70 0.62
plate boundary zone

Mid-oceanic ridges 292 0.76 0.69 0.69 0.58
Western Pacific 109 0.57 0.58 0.56 0.54
Southeast Asia 167 0.61 0.69 0.68 0.65
Total 1944 0.53 0.54 0.55 0.50

Table 6. Correlation coefficients obtained from a comparison between different deviatoric stress models from
the Geoid data set with the strain rate tensor field from the GSRM model with viscosities varying as a function
of strain rates only.

Region of interest Number of areas Mref ~ % Iref ~ % Iref ~ ﬁ Iref ~ ﬁ
Western North America 132 —0.31 —0.20 —-0.20 —-0.22
Andes 89 -0.32 —-0.31 —0.30 —0.34
Eastern Africa 164 —0.03 —0.06 —0.03 —0.04
Mediterranean 83 0.15 0.32 0.32 0.22
Central Asia 187 0.24 0.34 0.36 0.28
Indo-Australian 174 0.29 0.46 0.41 0.35
plate boundary zone

Mid-oceanic ridges 292 0.81 0.81 0.76 0.62
Western Pacific 109 —0.06 —0.07 —-0.09 —0.13
Southeast Asia 167 0.20 0.23 0.19 0.17
Total 1944 0.17 0.22 0.21 0.15

of integration) for a thin sheet approach and show that GPE and associated deviatoric stresses calculated from geoid do not fit the observed
deformation in the Earth’s deforming plate boundary zones. The poor fit may be related to filtering methods, but we emphasize that on a global
scale, the geoid should be used with caution for inferring GPE. That is, the usage of the geoid to infer GPE involves the assumption that there
is no dynamic topograpy signature in the Earth’s gravity field. We also demonstrate how a 2-D definition of deviatoric stress, along with 2-D
force balance equations, can yield overestimates of the depth integrals of the deviatoric stress magnitudes. Finally, we use a quantitative way
of testing our stress models with strain rate information from Global Strain Rate Map. The stress models indicate that GPE differences are
an important component of the total global stress field. However, GPE differences by themselves are, in general, insufficient to explain the
total deviatoric stress field, particularly in areas such as Eastern Africa, Andes, and Central Asia; an added contribution from basal tractions
is required to explain the observed discrepancies between the models and observations (Ghosh ef al. 2008). Although these basal tractions
are not in general large, they integrate over long distances to provide substantial additional stress input into the lithosphere (Bird et al. 2008;
Steinberger et al. 2001; Lithgow et al. 2009; Ghosh et al. 2008).

ACKNOWLEDGMENTS

We would like to thank John Haines for helpful discussions and Lada Dimitrova for input regarding reference level. Reviews by Bernhard
Steinberger and David Coblentz greatly improved the manuscript. Figures were prepared using GMT 3.4.4 and 4.3.1 by P. Wessel and W. F.
Smith. This research was funded by NSF grants EAR-031019, EAR-0545606 and EAR-0538437.

REFERENCES Becker, T.W. & O’Connell, R.J., 2001. Predicting plate velocities with man-
tle circulation models, Geochem., Geophys., Geosyst., 2, GC000171.

Airy, G.B., 1855. On the computation of the effect of the attraction of Bird, P, Liu, Z. & Rucker, W.K., 2008. Stresses that drive the plates from
mountain-masses, as disturbing the apparent astronomical latitude of below: Definitions, computational path, model optimization, and error
stations of geodetic surveys, Roy. Soc. Lond. Phil. Trans., 145, 101— analysis, J. geophys. Res., 113, B11406, doi:10.1029/2007JB005460.
104. Cazenave, A., Souriau, A. & Dominh, K., 1989. Global coupling of Earth

Artyushkov, E.V,, 1973. Stresses in the lithosphere caused by crustal thick- surface topography with hotspots, geoid and mantle heterogeneities, Na-
ness inhomogeneities, J. geophys. Res., 78, 7675-7690. ture, 340, 54-57.

Beavan, J. & Haines, J., 2001. Contemporary horizontal velocity and strain Coblentz, D.D. & Sandiford, M., 1994. Tectonic stresses in the African plate:
rate fields of the Pacific-Australian plate boundary zone through New constraints on the ambient lithospheric stress state, Geology, 22, 831—
Zealand, J. geophys. Res., 106, 741-770. 834.

© 2009 The Authors, GJI
Journal compilation © 2009 RAS



Gravitational potential energy differences 17

Table 7. Same as Table 6, but with viscosities varying as a function of both strain rates and lithosphere

thickness.

Region of interest Number of areas Iref ~ % Href ~ 35 Href ™~ 350 Iref ~ ﬁ
Western North America 132 —0.33 —0.20 —0.19 —0.20
Andes 89 -0.27 —-0.24 —-0.27 -0.32
Eastern Africa 164 —0.11 —0.19 —0.10 —0.09
Mediterranean 83 0.17 0.31 0.27 0.19
Central Asia 187 0.25 0.36 0.38 0.31
Indo-Australian 174 0.26 0.47 0.45 0.36
plate boundary zone

Mid-oceanic ridges 292 0.74 0.69 0.68 0.50
Western Pacific 109 —0.01 0 —0.04 —0.10
Southeast Asia 167 0.27 0.29 0.24 0.19
Total 1944 0.17 0.22 0.21 0.15

Coblentz, D.D., Richardson, R.M. & Sandiford, M., 1994. On the grav-
itational potential energy of the Earth’s lithosphere, Tectonophys., 13,
929-945.

Coblentz, D.D., Sandiford, M., Richardson, R.M., Zhou, S. & Hillis, R.,
1995. The origins of the intraplate stress field in continental Australia,
Earth planet. Sci. Lett., 133, 299-309.

Conrad, C.P. & Lithgow-Bertelloni, C., 2006. Influence of continental roots
and asthenosphere on plate-mantle coupling, Geophys. Res. Lett., 33,
L05312, doi:10.1029/2005GL025621.

Dalmayrac, B. & Molnar, P, 1981. Parallel thrust and normal faulting in
Peru and constraints on the state of stress, Earth planet. Sci. Lett., 55,
473-481.

de Boor, C.D., 1978. A Practical Guide to Splines, Springer-Verlag, New
York.

Engelder, T., 1994. Deviatoric stressitis: a virus infecting the Earth science
community, EOS, Trans. Am. geophys. Un., 75,211-212.

England, P.C. & Houseman, G.A., 1986. Finite strain calculations of conti-
nental deformation, Part 2. Comparison with the India—Eurasia collision
zone, J. geophys. Res., 91, 3664-3676.

England, P.C. & Jackson, J., 1989. Active deformation of the continents,
Ann. Rev. Earth Planet. Sci., 17, 197-226.

England, P.C. & McKenzie, D.P, 1982. A thin viscous sheet model for
continental deformation, Geophys. J. R. astr. Soc., 70,295-321.

England, P.C. & Molnar, P, 1997. Active deformation of Asia, from kine-
matics to dynamics, Science, 278, 647-650.

Fleitout, L., 1991. The sources of lithospheric tectonic stresses, Roy. Soc.
London Phil. Trans., 337, 73-81.

Fleitout, L. & Froidevoux, C., 1982. Tectonics and topography for a
lithosphere containing density heterogeneities, Tectonophysics, 1, 21—
56.

Fleitout, L. & Froidevoux, C., 1983. Tectonic stresses in the lithosphere,
Tectonophysics, 2, 315-324.

Flesch, L.M., Holt, W.E., Haines, A.J. & Shen-Tu, B., 2000. Dynamics of
the Pacific-North American plate boundary in the western United States,
Science, 287, 834-836.

Flesch, L.M., Haines, A.J. & Holt, W.E., 2001. Dynamics of the India—
Eurasia collision zone, J. geophys. Res., 106, 16 435-16 460.

Flesch, L.M., Holt, WE., Haines, A.J,, Wen, L. & Shen-tu, B., 2007.
The dynamics of western North America: Stress magnitudes and
the relative role of gravitational potential energy, plate interaction
at the boundary, and basal tractions, Geophys. J. Int., 169, 866—
896.

Frank, F.C., 1972. Plate tectonics, the analogy with glacier flow, and isostasy,
Flow and Fracture of Rocks, Geophys. Monogr. Ser., Vol. 16, pp. 285-292,
eds Heard, H.C. et al., AGU, Washington, DC.

Ghosh, A., Holt, W.E., Haines, A.J. & Flesch, L.M., 2006. Gravitational
potential energy of the Tibetan Plateau and the forces driving the Indian
plate, Geology, 34, 321-324.

Ghosh, A., Holt, WE., Wen, L., Haines, A.J. & Flesch, LM,
2008. Joint modeling of lithosphere and mantle dynamics elucidat-
ing lithosphere-mantle coupling, Geophys. Res. Lett., 35, 116309,
doi:10.1029/2008GGL034365.

© 2009 The Authors, GJI
Journal compilation © 2009 RAS

Hager, B.H., Clayton, R.W., Richards, M.A., Comer, R.P. & Dziewonski,
A.M., 1985. Lower mantle heterogeneity, dynamic topography and the
geoid, Nature, 313, 541-545.

Harper, J.E, 1975. On the driving forces of plate tectonics, Geophys. J. R.
astr. Soc., 40, 465-474.

Haxby, W.E. & Turcotte, D.L., 1978. On isostatic geoid anomalies, J. geo-
phys. Res., 83, 5473-5478.

Holt, W.E. & Haines, A., 1995. The kinematics of northern South Island,
New Zealand, determined from geologic strain rates, J. geophys. Res.,
100, 17991-18010.

Holt, W.E., Chamot-Rooke, N., Pichon, X.L., Haines, A., Shen-Tu, B. &
Ren, J., 2000. Velocity field in Asia inferred from Quaternary fault slip
rates and Global Positioning System observations, J. geophys. Res., 105,
19 185-19209.

Holt, W.E., Kreemer, C., Haines, A., Estey, L., Meertens, C., Blewitt, G.
& Lavallee, D., 2005. Project helps constrain continental dynamics and
seismic hazards, EOS, Trans. Am. geophys. Un., 86, 383-387.

Houseman, G. & England, P, 1986. A dynamical model of lithosphere ex-
tension and sedimentary basin formation, J. geophys. Res., 91, 719-729.

Humphreys, E. & Coblentz, D.,2007. North American dynamics and western
U.S. tectonics, Rev. Geophys., 45, RG3001, doi:10.1029/2005RG000181.

Taffaldano, G., Bunge, H.P. & Dixon, T.H., 2006. Feedback between moun-
tain belt growth and plate convergence, Geology, 34, 893—896.

Jones, C.H., Unruh, J. & Sonder, L., 1996. The role of gravitational potential
energy in active deformation in the southwestern United States, Nature,
381,37-41.

Klein, E.C., Flesch, L.M., Holt, WE. & Haines, A.Jl, 2009. Evi-
dence of long-term weakness on seismogenic faults in western North
America from dynamic modeling, J geophys. Res., 114, B03402,
doi:10.1029/2007JB005201.

Kreemer, C., Holt, W.E. & Haines, A.J., 2003. An integrated global model
of present-day plate motions and plate boundary deformation, Geophys.
J. Int., 154, 8-34.

Lister, C.R.B., 1975. Gravitational drive on oceanic plates caused by thermal
contraction, Nature, 257, 663—665.

Lithgow-Bertelloni, C. & Guynn, J.H., 2004. Origin of the lithospheric stress
field, J. geophys. Res., 109, B01408, doi:10.1029/2003JB002467.

Lithgow-Bertelloni, C. & Richards, M., 1995. Cenozoic plate driving forces,
Geophys. Res. Lett., 22, 1317-1320.

Lithgow-Bertelloni, C. & Silver, P.G., 1998. Dynamic topography, plate
driving forces and the African Superswell, Nature, 395, 269-272.

McKenzie, D., 1972. Active tectonics of Mediterranean region, Geophys. J.
R. astr. Soc., 30, 109-185.

Meade, B., 2007. Present-day kinematics at the India-Asia collision zone,
Geology, 35, doi:10.1130/G22942A.1.

Molnar, P, 1988. Continental tectonics in the aftermath of plate tectonics,
Nature, 335, 131-137.

Molnar, P. & Lyon-Caen, H., 1988. Some physical aspects of the support,
structure, and evolution of mountain, Spec. Paper Geol. Soc. Am., 218,
179-207.

Molnar, P. & Tapponnier, P, 1975. Cenozoic tectonics of Asia: effects of a
continental collision, Science, 189, 419—425.




18  A. Ghosh, W E. Holt and L. M. Flesch

Molnar, P, England, P. & Martinod, J., 1993. Mantle dynamics, uplift of the
Tibetan plateau, and the Indian monsoon, Rev. Geophys., 31, 357-396.
Morse, PM. & Feshbach, H., 1953. Methods of Theoretical Physics,

pp. 257-347, McGraw-Hill, New York.

Miiller, R.D., Roest, W., Royer, J., Gahagan, L. & Sclater, J., 1997. Digital
isochrons of the world’s ocean floor, J. geophys. Res., 102,3211-3214.
Panasyuk, S.V. & Hager, B.H., 2000. Models of isostatic and dynamic to-
pography, geoid anomalies, and their uncertainties, J. geophys. Res., 105,

28199-28209.

Parsons, B. & Richter, F., 1980. A relation between the driving force and
geoid anomaly associated with mid-oceanic ridges, Earth planet. Sci.
Lett., 51, 445-450.

Pratt, J.H., 1855. On the attraction of the Himalaya mountains, and the ele-
vated regions beyond them, upon the plumb line in India, Phil. Trans. R.
Soc. Lond., A 145, 55-100.

Reinecker, J., Heidbach, O., Tingay, M., Sperner, B. & Miiller, B., 2005.
The release 2005 of the World Stress Map, available at http://www.world-
stress-map.org.

Reynolds, S.D., Coblentz, D. & Hillis, R., 2002. Tectonic forces con-
trolling the regional intraplate stress field in continental Australia:
results from new finite-element modelling, J. geophys. Res., 107,
doi:10.1029/2001JB000408.

Sandiford, M. & Coblentz, D., 1994. Plate-scale potential-energy distribu-
tions and the fragmentation of ageing plates, Earth planet. Sci. Lett., 126,
143-159.

APPENDIX A: SPHERICAL TREATMENT

Sandiford, M., Coblentz, D. & Richardson, R., 1995. Ridge torques and con-
tinental collision in the Indian-Australian plate, Geology, 23, 653—656.
Sandiford, M., Coblentz, D. & Schellart, W., 2005. Evaluating slab-plate

coupling in the Indo-Australian plate, Geology, 33, 113-116.

Stein, C.A. & Stein, S., 1992. A model for the global variation in oceanic
depth and heat flow with lithospheric age, Nature, 1992, 123—129.

Steinberger, B., 2007. Effect of latent heat release at phase boundaries
on flow in the earth’s mantle, phase boundary topography and dy-
namic topography at the earth’s surface, Phys. Earth planet. Int., 164,
doi:10.1016/j.pepi.2007.04.021.

Steinberger, B., Schmeling, H. & Marquart, G., 2001. Large-scale litho-
spheric stress field and topography induced by global mantle circulation,
Earth planet. Sci. Lett., 2001, 75-91.

Thatcher, W., 2007. Microplate model for the present-day deformation of
Tibet, J. geophys. Res., 112,401, doi:10.1029/2005JB004244.

Turcotte, D. & Schubert, G., 1982. Geodynamics: Applications of Contin-
uum Physics to Geological Problems, p. 450, John Wiley, New York.

Wen, L. & Anderson, D.L., 1997. Present-day plate motion constraint on
mantle rheology and convection, J. geophys. Res., 102, 24 63924 653.

Zoback, M.L., 1992. First and second order patterns of stress in the litho-
sphere: the World Stress Map Project, J. geophys. Res., 102, 11703—
11728.

Zoback, M.L. & Mooney, W.D., 2003. Lithospheric buoyancy and continen-
tal intraplate stresses, /nt. Geol. Rev., 45,95-118.

In spherical coordinates, the x, y and z directions of cartesian coordinates change to the ¢, 6 and r (radial) components, respectively. The

deviatoric stress tensor in the radial direction is

1
Trr = Opr — 7 O0kk>» (Al)
3
where o,, is the total stress tensor in the radial direction and %akk is the mean total stress. The total stress tensor, o; = 7;; + %akké,-j, then
becomes
0y = Ty + 8;(0rr — Tr), (A2)
where §;; represents the Kronecker delta. The force balance eq. (1) can be written in spherical coordinates as
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Vertically integrating (A3) and (A4) yields
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where 7y is the radius from the centre of the Earth to the surface and »; is the radius from the centre to the base of the lithosphere. Substituting

(A2) in (A6) and (A7), we arrive at

o 1 0
00529/ 72T¢9d}’> + ——(
L cosf d¢

ro
/ }"ZO',.rd}’> - sz¢r|rL =0 (AS)

L

1 0 "o 1 9 "o 1 9
— / r2r¢¢dr - / rzrr,dr + —
cosf d¢p \ J,, cosf d¢p \ J,, cos?6 a0
and
1 9 "o 19 "o "o a "o
— / Prgedr ) + = — / 2 Tgedr +/ rrrgedr | — — / r2t,.,.dr
cosf ap \ J,, 200\ J,, L 0\ J,,

el wt o] [ [P ([
————| cos reT - r°T, —
2cos?6 96 L, , o\ J,

d]‘) - erGrlrL = 0: (A9)

© 2009 The Authors, GJI
Journal compilation © 2009 RAS



Gravitational potential energy differences 19

which are equivalent to eqs (5) and (6) in text. Note that o, |,, and o, |, are zero. For a thin sheet, the gradients of o4, and o, are negligibly

lrg lro
small (see text). Moreover, the term %(20,, — 0pp — Opp) is small compared to pg. Hence, (A5) can be approximated as

8arr

—pg=0 (A10)
or
which implies
o
Oy = —/ pgdr (A1D)

so that the GPE eq. (7) in spherical coordinates is equivalent to

’
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Substituting ' =rg — z' and r; = rg — L, we have
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E

where 7 is the constant radius of the Earth and L is the depth to the base of the lithosphere. Eq. (A15), therefore, provides the magnitude of
error in GPE introduced by the flat-Earth approximation.

Let us denote GPE with the correct level of reference at the base of the lithosphere as 35%¢ (eq. 7 in text), and let GPE with the sea level
or geoid as reference level be 55°¢ (eq. 8 in text). From egs (7) and (8),

L
O-‘f;e()id — -szase —|—L[ p(z)gdz, (Al6)
—h
which in spherical coordinates can be written as
ro rE ro 1 ro 1
/ r2o,,.dr +/ 2P dr = _/ gpg(r:s —r})dr +/ gpg(r% —r})dr (A17)
rL rL rL rL
ro l 3
= [ oetr -y (19
L
LA LA WY S U S S (A19)
3 E = 3 E E z =rgz repz 3Z

where P, = fr' LO pgdr, is the pressure at the base of the lithosphere. The first term on the left-hand side of (A17) is the GPE term in (A12).
The [ functional in eq. (9) is given by

1
I = // [Ew + 2r¢9 + T2 + (Tp + Top) ] cos 6 d¢ do

// L0ty | L0 bt 4 — L (cos?0Tp) + —— 5,
cosf ¢ cosf 3¢ Too 7 Too cos2 6 36 0% cosf 8(/)

3 a0,
Too + = 230 (rae + Typ) + (cos O[Too — Tppl) + W] } cos6 d¢pd o

19
2’\9[ 6 3 2cos20 30
(A20)

where T;; are the vertically integrated deviatoric stresses, &, is the vertically integrated vertical stress, or GPE, A4, Ay represent the horizontal
components of the Lagrange multipliers, and y is the relative viscosity.
The J functional in eq. (13) can be written in spherical coordinates as

= obs T = obs
Toe Do Toe Py
= / / o | — | @ VU 7o | = | o cos 6 dp do (A21)
Tpo oy Tpo Doy
where
Tpp = 1L L P ane), (A22)
cosf d¢
g
Too = ol A23
Too w 39 ( )
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_ M 8)\.¢ 1 8)\‘9
K% A tan @ A24
%90 = 2( t oosg ag ) (A2
2 1 0
- 1
Vi=—]1 2 0 (A25)
N
0 0 2
and
5 5 r
(@55, @35, D) = (—75,—7§,O> : (A26)

The relation between 2-D and 3-D stresses (eqs 2426 in text) is given by

Ty =27 + T (A27)
o0 =Ty +2%,7 (A28)
T (A29)

APPENDIX B: DYNAMIC TOPOGRAPHY

Dynamic topography is defined as the topography that arises from sub-lithospheric density anomalies, which drive mantle flow. The radial
component of mantle flow (z,,.) causes vertical displacements of the lithosphere producing dynamic topography. These kinds of topographical
features are in contrast to those created by density variations within the lithosphere that might be called static topography. The total topography
that we observe on the surface of the Earth is the net sum of these static and dynamic parts. Isolation of this dynamic topography provides a
constraint on the lithospheric contribution of topography. Thus, one aim of our study is to distinguish between these two types of topographies
by estimating the styles and magnitudes of dynamic topography from our crustal solutions. Estimates of global dynamic topography have
been provided by Hager et al. (1985), Cazenave ef al. (1989), Panasyuk & Hager (2000), Steinberger et al. (2001), Steinberger (2007) and
Lithgow-Bertelloni & Guynn (2004). Cazenave ef al. (1989) and Panasyuk & Hager (2000) calculated dynamic topography by removing the
effects of isostatic topography from the observed topography, the same way as we do here. Steinberger et al. (2001) and Lithgow-Bertelloni
& Guynn (2004) used mantle flow field whereas Hager et al. (1985) used geoid anomalies to calculate dynamically induced topography.
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Figure B1. Global distribution of dynamic topography. The white and red areas indicate positive dynamic topography whereas the blue areas indicate negative
dynamic topography. The maximum dynamic topography ~3.5 km occurs in Central East Africa. Topography on scalebar is in metres.
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GPE values from the uncompensated model contain the influence of dynamic topography as well. The weight of the lithospheric
column, o,,(L), at reference depth L is given by 0,.(L) = ffh 0(2)g(z")dz' = o2.(L) + 1..(L), in the presence of dynamic topography. This
formulation ignores any contribution from flexure. Here, o°,,(L) is the reference stress, whereas 7,,(L) is the radial traction at reference level
L associated with deeper mantle flow that is responsible for producing dynamic topography. To remove the dynamic topography contribution,
an isostatically compensated solution (uniform vertical stress at depth L) is calculated. One way of compensating our solution, as stated
before, is by adjusting the elevations of the crustal blocks. Accordingly, areas with lower than average vertical stress at reference depth
L get elevated to achieve uniform vertical stress at reference level whereas those with higher than average vertical stress at depth L are
lowered in elevation. Thus, the difference between the compensated topography and observed topography should provide an estimate of the
magnitude of dynamic topography. In our model, the highest magnitude dynamic topography (~3.5 km) occurs in eastern Africa (Fig. B1)
(Lithgow-Bertelloni & Silver 1998). Other areas of positive dynamic topography are Northern Atlantic near Greenland and parts of western
North America. Somewhat lower magnitude positive dynamic topography occurs along the mid-oceanic ridges. These are possible areas of
upwelling, whereas areas of negative dynamic topography include eastern North America, parts of western Europe, and the deeper oceans.
Our results bear considerable similarities to that of Panasyuk & Hager (2000) who computed dynamic topography in the above procedure;
the only difference is that they used a less fine crustal data set than we have. There might be possible errors in our estimates of dynamic
topography magnitudes due to uncertainties in the upper-mantle densities. However, this will not have any considerable effect on the styles
of dynamic topography.

APPENDIX C
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Figure C1. Same as Fig. 2 with (a) Asia, (b) North America, (c) the Aegean region, (d) the Central Indian Ocean and (e) eastern Africa zoomed in.
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Figure C1. (Continued.)
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Figure C1. (Continued.)
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Figure C2. Same as Fig. 9 with (a) Asia, (b) North America, (c) the Aegean region, (d) Central Indian Ocean and (e) Africa zoomed in and the unit tensors
shown on top of the correlation. Thick, clear arrows with grey outline are tensional axes of the predicted deviatoric stress tensors (unit tensor), whereas thin
grey arrows are the compressional axes of the predicted deviatoric stress tensors. Black denote the strain rate unit tensors. Thick black arrows are extensional
strain rate axes, thin black arrows are compressional.
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Figure C2. (Continued.)

© 2009 The Authors, GJI
Journal compilation © 2009 RAS



26  A. Ghosh, W E. Holt and L. M. Flesch

20°

10°

-10°

\_"14.."'-.,"-1,"--

Figure C2. (Continued.)
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