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[1] The way in which basal tractions, associated with mantle convection, couples with the
lithosphere is a fundamental problem in geodynamics. A successful lithosphere-mantle
coupling model for the Earth will satisfy observations of plate motions, intraplate stresses,
and the plate boundary zone deformation. We solve the depth integrated three-dimensional
force balance equations in a global finite element model that takes into account effects
of both topography and shallow lithosphere structure as well as tractions originating from
deeper mantle convection. The contribution from topography and lithosphere structure
is estimated by calculating gravitational potential energy differences. The basal tractions
are derived from a fully dynamic flow model with both radial and lateral viscosity
variations. We simultaneously fit stresses and plate motions in order to delineate a best-fit
lithosphere-mantle coupling model. We use both the World Stress Map and the Global
Strain Rate Model to constrain the models. We find that a strongly coupled model with
a stiff lithosphere and 3–4 orders of lateral viscosity variations in the lithosphere are best
able to match the observational constraints. Our predicted deviatoric stresses, which
are dominated by contribution from mantle tractions, range between 20–70MPa.
The best-fitting coupled models predict strain rates that are consistent with observations.
That is, the intraplate areas are nearly rigid whereas plate boundaries and some other
continental deformation zones display high strain rates. Comparison of mantle tractions
and surface velocities indicate that in most areas tractions are driving, although in a
few regions, including western North America, tractions are resistive.
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1. Introduction

[2] The plate-mantle coupling problem has been one of
the central problems in present-day geodynamics. It refers to
the way deeper, density buoyancy-driven mantle tractions
affect lithospheric deformation. This coupling problem has
implications on the questions of what drives the Earth’s
tectonic plates, what role does mantle convection play, and
what is the nature of coupling between plates and deep
mantle flow? Many studies have attempted to model plate
tectonics (through the torque balance method or through
calculating the lithospheric stress field) as a mere lithospheric

process, independent of active deeper density buoyancy-
driven convective flow in the mantle [Solomon et al., 1975;
Richardson et al., 1979; Sandiford and Coblentz, 1994]. On
the other hand, various other studies have considered mantle
convection and plate tectonics as a single system in order to
explain the plate tectonic phenomenon [Bercovici, 1995,
1998; Tackley, 1998, 2000; Trompert and Hansen, 1998] or to
explain observables such as the geoid, dynamic topography,
and plate motions [Hager, 1984; Hager et al., 1985; Richards
and Hager, 1984;Gable et al., 1991; Forte et al., 1993; Zhang
and Christensen, 1993; Wen and Anderson, 1997b, 1997c;
Thoraval and Richards, 1997; Zhong and Davies, 1999;
Becker and O’Connell, 2001; Zhong, 2001; Moucha et al.,
2007; Kaban et al., 2007; Tosi et al., 2009; Yoshida and
Nakakuki, 2009; Ghosh et al., 2010; Forte et al., 2010a,
2010b]. However, the problem with directly relating mantle
convection with plate tectonics is that the latter is not strictly a
fluid dynamical process, as evident from the existence of
nearly rigid plates. In this paper, we seek to address the role
and nature of lithosphere-mantle coupling by performing a
joint modeling of lithosphere dynamics and mantle convec-
tion. Two important observations that are sensitive to the
nature of plate-mantle coupling are the lithospheric deviatoric
stress field and plate motions. If the initial coupling model is
correct, the predicted deviatoric stress tensor field will match
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deformation indicators, and the predicted surface motions
will also match the observed plate motions. However, use of
either one of these constraints, by itself, leads to nonunique
inferences about the plate-mantle coupling system. That is, a
particular coupling model may satisfy one constraint but not
the other. Hence, both of these constraints are necessary to
delineate a coupling model for the Earth.
[3] The prediction of the Earth’s lithospheric stress field, as

well as its plate motions, is largely influenced by the distri-
bution of density buoyancies as well as radial and lateral
variation of viscosities in the lithosphere and the mantle.
In the past, there have been studies that investigated this
lithosphere-mantle coupling problem [Bai et al., 1992; Bird,
1998; Steinberger et al., 2001; Lithgow-Bertelloni and Guynn,
2004; Ghosh et al., 2008; Bird et al., 2008; Naliboff et al.,
2009; Ghosh and Holt, 2012] by jointly modeling lithosphere
and mantle dynamics and predicting the lithospheric stress
field. Bai et al. [1992] were the first to perform such a joint
modeling. They used the intraplate stress field to evaluate their
models. However, they failed to achieve a good correlation
between their predicted stresses and observed stress directions.
Bird [1998] utilized a thin sheet method with faults at plate
boundaries and temperature-dependent viscous rheology in
his approach to model the lithospheric stress field. He con-
cluded that basal driving tractions were necessary to match the
observed stress field. Steinberger et al. [2001] computed the
global stress field from mantle convection based on global
seismic tomography and added it to the contribution from
intralithospheric sources. They, on the other hand, found that
predicted stress directions with or without mantle flow mat-
ched stress observations equally well. They also predicted
plate motions in addition to predicting the intraplate stress
field. Lithgow-Bertelloni and Guynn [2004] performed a joint
modeling of lithospheric and mantle sources of stress and
explored the effects of radial changes in viscosity in the mantle.
Like Bird [1998], they too argued for importance of basal
tractions. Ghosh et al. [2008] performed similar joint modeling
using solutions to depth integrated three-dimensional (3-D)
force balance. They found that stresses from basal tractions,
arising due to density driven mantle convection, when added to
stresses from topography and shallow lithospheric sources,
yield a better fit to deformation indicators along the Earth’s
plate boundary zones. They also tested the sensitivity of different
radially variable viscosity structures and argued for strong
lithosphere-asthenosphere viscosity contrasts. Excluding the
first and last-mentioned study, all the other studies used the
World Stress Map (WSM) [Zoback, 1992; Heidbach et al.,
2008] to constrain their modeled lithospheric stress field.
Ghosh et al. [2008], on the other hand, used the velocity gra-
dient tensor field along the deforming plate boundary zones
from the Global Strain Rate Map (GSRM) [Kreemer et al.,
2003] to constrain their predicted stresses. None of the above
studies, however, investigated lateral variation in both litho-
sphere and asthenosphere viscosity. Naliboff et al. [2009]
looked particularly at the effects of lateral viscosity variations
on plate-mantle coupling. They concluded that the presence of
cratonic roots do not have a significant effect on stress mag-
nitudes and pattern in the overlying lithosphere. However,
they did not compare their results with any observational
constraint. The addition of lateral variation of viscosity also
enables one to adequately predict plate motions. It is thus
important to satisfy both the deformation constraint and the

plate motion constraint in order to delineate the best plate-
mantle coupling model. Ghosh and Holt [2012] looked at
predictions of deviatoric stresses and plate motions using
similar joint modeling method as in Ghosh et al. [2008],
except that they tested lateral viscosity variations in the litho-
sphere and upper mantle. In this study we further quantify the
sensitivity of plate motions and stresses to lateral viscosity
variations. We also quantify driving versus resistive tractions
on the Earth’s surface and present a complete model for the
motions of the major plates.
[4] We compute the lithospheric stress field from sources

within the lithosphere and from a full 3-D mantle flow field,
driven by density buoyancies within the mantle that includes
both radial and lateral viscosity variations. We compare our
solutions with the plate motion model of Kreemer et al. [2006]
defined by GPS observations, with strain rate information from
GSRM, and with SHmax (most compressive principal stress
axes) directions from the WSM. Plate velocities consist of both
poloidal and toroidal components. The poloidal component is
associated with upwelling (divergence) in mid-oceanic ridges
and downwelling (convergence) in subduction zones, whereas
the toroidal component is related to strike-slip faulting along
transform fault boundaries. We generate plate motions self-
consistently from our convection models, instead of placing
them as a priori boundary conditions. The combination of
predicting lithospheric stress field and plate motions enables
us to investigate the nature of plate-mantle coupling. Another
important contribution of the present study is the matching of
the relative toroidal and poloidal flow magnitudes. Barring a
few studies, matching the toroidal/poloidal velocity ratio has
proved to be a difficult problem in studies of mantle convec-
tion (discussed in section 4.2). In this study, we not only
attempt to match the direction of plate velocities, but also their
relative magnitudes via the computation of the toroidal/
poloidal velocity ratio. A very important consequence of using
all the three constraints of lithospheric stress field, plate
motions, and the toroidal/poloidal velocity ratio is the elimi-
nation of a wide range of viscosity models that fail to satisfy
these constraints simultaneously.

2. Method

[5] On a longer timescale, plates behave as viscous bodies
and flow horizontally under their own weight. Frank [1972]
drew the analogy of the Earth’s lithospheric motion to the
flow in glaciers. Lateral density variations within the litho-
sphere, along with varying crustal thickness and topography,
give rise to gravitational potential energy per unit area (GPE)
differences. A higher elevation column of lithosphere stores
more GPE than a lower elevation column of the same density.
The horizontal gradients in GPE produce deviatoric stresses
that give rise to horizontal flow from points of high GPE to
points of low GPE. Effects of these density variations within
the lithosphere have been studied by Artyushkov [1973],
Fleitout and Froidevoux [1982], Fleitout and Froidevoux
[1983], Fleitout [1991], Richardson [1992], and Coblentz
et al. [1994], amongst many others. On the other hand,
mantle convection can be envisaged as a fluid dynamical
process whereby the flow is driven by sources of buoyancy
deep into the mantle (mostly subducted slabs). These buoy-
ancy sources lead to convection on a variety of scales, which
give rise to basal tractions that act at the base of the
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lithosphere and contribute to the lithospheric stress field. To
date, the most efficient way to address the full problem is to
separate it into two parts: (1) the contribution of GPE dif-
ferences and (2) the contribution of coupling with 3-D mantle
flow. We separately calculate these two contributions
through solutions to depth-integrated 3-D force balance in a
finite element model of the lithosphere that possesses detailed
lateral viscosity variations. Tractions arising from 3-Dmantle
convection act as a basal boundary condition in the litho-
sphere finite element model. The solutions of GPE and trac-
tions are then combined to obtain the full model. We show
with benchmarking tests that this method is an accurate and
efficient means to explore a wide range of models. Breaking
the problem into two parts also allows us to quantify the
relative contribution of coupling with mantle flow versus the
contribution of detailed topography and lithosphere structure,
which is a controversial issue.

2.1. Depth Integration of 3-D Force Balance Equations

[6] The force balance equations, in spherical coordinates,
are given as [Ghosh et al., 2008],
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where r is the radius of the Earth, r is the density, g is the
gravitational acceleration, sij are the total stresses, θ is lat-
itude, and ’ is longitude. Vertically integrating (1) and (2)
and substituting the total stress tensor, sij, by the deviatoric
stress tensor, tij, via sij ¼ tij þ 1
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[7] Here, r0 is the radius from the center of the Earth to the
surface, rL is the radius from the center to a constant refer-
ence level, and dij is the Kronecker delta. Because horizontal
tractions at the surface, tr’(r0), trθ(r0), are zero, the integral
of the last term in equations (1) and (2) yields the horizontal
tractions, r3Lt’r rLð Þ and r3Ltθr rLð Þ, acting at the reference level
rL. Density driven mantle convection plays a fundamental
role in generating these tractions. As long as the depth
integral of horizontal tractions is small in comparison with
the depth integrals of horizontal deviatoric stress, it is
appropriate to seek solutions to equations (4) and (5) [Ghosh
et al., 2009]. The first term on the right-hand side of
equations (5) and (6) represents horizontal gradients in the
depth integrals of vertical stress, or GPE. As such, the
gradients in GPE and the tractions acting at the reference level,
rL, constitute body-force-like terms, and are constrained by
observations: GPE by topography and a seismically-defined
crustal thickness dataset (Crust 2.0), and tractions by a self-
consistent whole mantle circulationmodel [Wen and Anderson,
1997b] that is described in the next section.
[8] The approximation that we make, which could be

called the approximation that underlies the “thin sheet”
approach, is that the gradients of s’r and sθr in equation (3)
are negligibly small as is the term 1

r 2srr � s’’ � sθθ
� �

compared to rg. Hence, equation (3) can be approximated as
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based on a reference level at depth rL. We take rL to be
100 km below sea-level. In the estimation of lithosphere
GPE we do not take into account deeper lithospheric buoy-
ancies arising from cratonic roots; instead, they are consid-
ered part of the convection problem. In order to consider
these deeper lithospheric buoyancies in the lithospheric
calculation of GPE, a variable base lithosphere needs to be
accounted for, which involves sophisticated methods that
are beyond the scope of this paper. In oceans, r0 constitutes
sea-level and hence is constant, whereas it varies in conti-
nents in accordance with varying topography. Given the
GPE differences, solutions to (4) and (5) can be obtained
with t’r and tθr set to zero. Alternatively, given the basal
tractions, gradients in GPE (7) can be set to zero in order
to compute the stress response from basal tractions. The
two contributions from each set of forcings are added to
obtain the total lithospheric stress field, as the equations
are linear in stress. We use a finite element technique [Flesch
et al., 2001] on a global grid of 1��1� such that the deviato-
ric stress field solution provides a global minimum in the
second invariant of deviatoric stress, taking into account
rheological variations due to strong plates and weak plate
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boundaries. Based on the strain rates from GSRM, the plate
boundaries are assigned variable viscosities using the
method of Ghosh et al. [2009],
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, and _eθθ; _e’’ and
_e’θ are the strain rates from Kreemer et al. [2003]. A
reference viscosity is assigned to a moderately straining region
in western North America (straining at a rate of 1.5� 10� 7/yr)
having an effective viscosity� 30 times lower than the nonde-
forming intraplate regions. E2

ref is the reference value for E2

corresponding to the value for mref. From these modeled devia-
toric stresses, we can also calculate strain rates and plate
velocities.
[9] The GPE in equation (8) is calculated from the crustal

thickness and density dataset in Crust 2.0 [G. Laske et al.,
Crust 2.0: A new global crustal model at 2� 2 degrees, 2002,
available at http://mahi.ucsd.edu/Gabi/rem.html]; the densi-
ties in the oceanic lithosphere are defined by the cooling plate
model based on ocean floor age data [Müller et al., 2008,
1997] with revised parameters from Stein and Stein [1992].

2.2. Mantle Convection Treatment for Generating
Traction Boundary Conditions

[10] The basal tractions that are applied as basal boundary
conditions in the finite element model (solution to equations
(5) and (6)) are obtained from a separate whole mantle con-
vection model and the methodology of [Wen and Anderson,
1997b], assuming an incompressible Newtonian viscous fluid
with zero Reynold’s number. The flow is driven by tomogra-
phy and history of subduction. The governing equations are
the equation of continuity,

r � U ¼ 0; ð9Þ

[11] U being the surface velocity, the equation of motion,

r � tþ drg ¼ 0; ð10Þ

and the constitutive equation between stress and strain rate,

t ¼ �pþ 2�e: ð11Þ

[12] Here t is the stress tensor, dr the density anomaly, g
the acceleration due to gravity, p the pressure, � the viscosity
and e the strain rate tensor. The variables are expanded in
terms of spherical harmonics. For a radially symmetric vis-
cosity structure, poloidal-poloidal, poloidal-toroidal, and
toroidal-toroidal equations are decoupled at every spherical
harmonic degree and order [Kaula, 1975; Hager and
O’Connell, 1981]. For a laterally variable viscosity structure,
poloidal and toroidal equations are coupled at each degree
and order [Wen and Anderson, 1997b]. If the coefficients are
truncated at a certain spherical harmonic degree, the above
equations can be reduced to a set of linear equations and can
be solved in three dimensions using a semispectral iterative

method [Karpychev and Fleitout, 1996]. The boundary
conditions are free-slip at the surface and at core-mantle
boundary (CMB). Our mantle convection models include
both radial and lateral variations of viscosity, with the lower
mantle being 10 times more viscous than the upper mantle.
The density anomalies in the upper mantle are inferred by
adjusting the relative weights of density anomalies related to
subducting slabs and residual tomography [Wen and
Anderson, 1997a] on the basis of fitting the geoid. The
density structure in the lower mantle was derived from a
seismic tomographic model [Su et al., 1994]. With latitude θ
as positive north latitude, the basal tractions can be given as
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where �0 is the reference viscosity, Zlm
4 and Zlm

6 are the spher-
ical harmonic coefficients for the poloidal and toroidal com-
ponents of stress (defined in Wen and Anderson [1997b]),
Ylm(θ,’) is the surface normalized spherical harmonic of
degree l and order m, whose maximum value is 31 in this
study. The horizontal velocities are given by
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where Z2 and Z5 are the poloidal and toroidal components
of velocity, expressed as divergence (r �U) and vorticity
(r�U, U being the velocity). Using a solution method
described below, tractions from the convection model are output
at a constant reference level, rL, and then applied below a laterally
variable lithosphere ofmuch higher resolution (1� 1 degree) in a
finite element model to yield estimates of the depth integral of
deviatoric stress associated with these tractions.
[13] We experiment with various radially symmetric, as

well as laterally variable viscosity structures (Table 1). Note
that the truncation degree is quite low in our study (l = 31)
and hence, small scale features are missing in our convection
model. We are therefore investigating the contribution of
long-wavelength components of density driven mantle flow,
which generates basal tractions at the reference level rL. The
lateral viscosity variations in the finite element lithosphere
model, discussed next, in which the depth integral predic-
tions of deviatoric stress are performed, is of much higher
resolution (1� 1 degree). The main goal of the study is to
explain the first order features of generating plate motion
and lithosphere deviatoric stress by a simple model, and not
to match all the detailed features of these, which would
require much higher resolution and sophisticated models for
both the mantle flow and lithosphere stress predictions.

2.3. Solving for Depth Integrated Deviatoric Stresses
in the Lithosphere Associated With Basal Tractions
and GPE Differences

[14] Our finite element solution provides depth integrals of
deviatoric stress that both balance the body force distribu-
tions and simultaneously constitute a global minimum of the
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Table 1. Results From Our Various Viscosity Modelsa

Model

Viscosity

Stress

Plate Motions

0–100 100–200 200–400 RMS (cm/y) P/P0 T/T0

lith c o wz c asth asth

1 100 1000 0 0 10 0.01 0.01 0.80 1.20 0.92 0.89
2 100 1000 0 0 1 0.01 0.01 0.82 1.09 0.93 0.90
3 100 1000 0 0 0.1 0.01 0.01 0.82 1.07 0.93 0.91
4 100 1000 0 0 0 0.01 0.01 0.82 1.06 0.94 0.91
5 100 1000 0 0 100 0.1 0.1 0.82 1.21 0.87 0.82
6 100 1000 0 0 10 0.1 0.1 0.85 1.03 0.87 0.82
7 100 1000 0 0 1 0.1 0.1 0.85 1.01 0.94 0.92
8 100 1000 0 0 0 0.1 0.1 0.85 1.01 0.94 0.92
9 100 10000 0 0 0 0.01 0.01 0.82 1.06 0.93 0.91
10 100 10000 0 0 0 0.1 0.1 0.85 1.02 0.94 0.92
11 10 100 0 0 10 1 1 0.70 1.56 0.78 0.64
12 10 100 0 0 10 0.1 0.1 0.82 1.02 0.95 0.93
13 10 100 0 0 1 0.1 0.1 0.82 1.03 0.89 0.86
14 10 100 0 0 0 0.1 0.1 0.82 1.03 0.87 0.82
15 10 100 0 0 0 0.01 0.01 0.81 1.03 0.87 0.82
16 1 100 0 0 0 0.01 0.01 0.78 1.10 0.94 0.90
17 100 0 1000 0 0 0.01 0.01 0.82 1.06 0.93 0.91
18 100 0 1000 0 0 0.1 0.1 0.85 1.01 0.94 0.92
19 10 0 100 0 0 0.01 0.01 0.81 1.05 0.94 0.91
20 10 0 100 0 0 0.1 0.1 0.82 1.10 0.93 0.91
21 1 0 10 0 0 0.01 0.01 0.71 1.35 0.89 0.86
22 1 0 10 0 0 0.1 0.1 0.22 3.30 0.08 0.26
23 1 0 100 0 0 0.1 0.1 0.51 2.77 0.36 0.49
24 1 0 100 0 0 0.01 0.01 0.76 1.27 0.91 0.87
25 100 0 0 sr 0 0.01 0.01 0.82 1.06 0.93 0.91
26 10 0 0 sr 0 0.01 0.01 0.80 1.04 0.94 0.91
27 10 0 0 sr 0 0.1 0.1 0.75 1.18 0.94 0.91
28 1 0 0 sr 0 0.1 0.1 0.08 3.53 0.04 0.18
29 1 0 0 sr 0 0.01 0.01 0.63 1.49 0.88 0.84
30 100 1000 1000 0 10 0.1 0.1 0.85 1.04 0.94 0.92
31 100 1000 1000 0 1 0.1 0.1 0.85 1.01 0.94 0.92
32 100 1000 1000 0 1 0.01 0.01 0.82 1.09 0.93 0.90
33 10 100 100 0 100 0.1 0.1 0.78 1.32 0.91 0.88
34 10 100 100 0 10 0.1 0.1 0.83 1.04 0.94 0.92
35 10 100 100 0 1 0.01 0.01 0.82 1.07 0.93 0.90
36 1 100 10 0 0 0.01 0.01 0.79 1.06 0.94 0.89
37 100 1000 0 sr 1 0.1 0.1 0.85 1.01 0.94 0.92
38 100 1000 0 sr 0.1 0.01 0.01 0.82 1.07 0.93 0.91
39 10 100 0 sr 10 0.1 0.1 0.83 1.06 0.94 0.92
40 10 100 0 0.1 10 0.1 0.1 0.82 1.03 0.94 0.92
41 10 100 0 0.1 1 0.1 0.1 0.82 1.05 0.94 0.91
42 10 0 100 sr 0 0.1 0.1 0.83 1.03 0.94 0.92
43 10 0 100 sr 0 0.01 0.01 0.81 1.05 0.94 0.91
44 100 0 1000 sr 0 0.01 0.01 0.82 1.06 0.93 0.91
45 100 0 1000 sr 0 0.1 0.1 0.85 1.01 0.94 0.92
46 100 1000 1000 sr 10 0.1 0.1 0.85 1.05 0.94 0.92
47 100 1000 1000 sr 1 0.1 0.1 0.85 1.01 0.94 0.92
48 100 1000 1000 sr 0 0.1 0.1 0.85 1.01 0.94 0.92
49 100 1000 1000 sr 1 0.01 0.01 0.82 1.10 0.93 0.90
50 100 1000 1000 sr 0.1 0.01 0.01 0.82 1.07 0.93 0.91
51 100 1000 1000 sr 0 0.01 0.01 0.82 1.06 0.93 0.91
52 10 100 100 0.1 10 0.1 0.1 0.83 1.05 0.94 0.91
53 10 100 100 0.1 1 0.1 0.1 0.83 1.03 0.94 0.91
54 10 100 100 0.1 0.1 0.01 0.1 0.82 1.02 0.93 0.90

aThe three columns under Viscosity denote the depth of occurrence of lateral viscosity variations (between 0–400 km). lith, c, o, and wz stand for lith-
osphere, continental cratonic regions, old oceanic lithosphere, and weak zones, respectively. sr stands for strain rate dependent viscosity. The reference
viscosity is 1021 Pa-s. Hence, a value of 10 would mean an absolute viscosity of 1022 Pa-s. A value of 0 would mean no viscosity variation due to that par-
ticular feature. The column next to Viscosity (labeled Stress) indicates correlation coefficients between strain rate tensor field from GSRM and predicted
deviatoric stress fields from combined GPE plus tractions. The column RMS indicates the RMS misfit (cm/yr calculated at every degree for 63,000 points
on Earth) between the predicted dynamic surface velocities and kinematic velocities (from Kreemer et al. [2006]). The P/P0 and T/T0 under Plate Motions
denote the average correlation coefficients up to spherical harmonic degree 20 between the dynamic and kinematic (from Kreemer et al. [2006]) patterns of
poloidal and toroidal velocity. Hence, for example, the second row (model 1) implies that the lateral viscosity variations in the top 100 km is only due
to the presence of higher viscosity cratonic regions that are 1000 times that of reference viscosity with a lithosphere 100 times stronger than reference viscos-
ity. Below 100 km the cratons possess a viscosity that is 10 times stronger than the reference viscosity between the depths of 100–200 km. Outside of cratonic
regions between 100–200 km depth, and everywhere between 200–400 km depth, the asthenosphere possesses a viscosity 100 times weaker than reference
viscosity.
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second invariant of deviatoric stress. This is accomplished
through minimization of the following functional [Flesch
et al., 2001]:
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where�t’’,�tθθ, and�t’θ are the vertically integrated deviatoric
stresses, �srr is the vertically integrated total vertical stress,
l’, lθ represent the horizontal components of the Lagrange
multipliers for the force balance equation constraint, and m
is the relative viscosity, which varies laterally in order to
take into account weak plate boundaries and strong plates
in the lithosphere model (equation (8)). The body force
equivalents that go into making up the potentials are distri-
butions of GPE and distributions of the negative of the trac-
tions. It should be noted that the stress magnitudes within the
global force balance, as well as the orientations and styles of
those stresses, are primarily controlled by the effective body
forces, and only weakly controlled by relative viscosities.
Optimizing equation (16) yields a relation between the
deviatoric stresses, tab, and the Lagrange multipliers, l’
and lθ [Flesch et al., 2001]
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[15] Note that the relation between t and the Lagrange
multipliers, l’, lθ, is identical to the relation between strain
rate and velocities. Substitution of 17–19 into �t’’;�tθθ , and
�t’θ in the following J functional, and then minimization of J
with respect to l’ and lθ provides a solution to the force
balance in equations (2) and (3), where J is
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[16] Here �t’’;�tθθ , and �t’θ are the depth integrated
deviatoric stresses we are solving for,Φobs

’’ ;Φ
obs
θθ , andΦ

obs
’θ are

the potentials consisting of horizontal integrals of the body
force equivalents and eV is the variance-covariance matrix
[see Ghosh et al., 2008, Appendix B]. For calculation of
the depth integrals of deviatoric stress, we solve equations
(4) and (5), given distributions of GPE, 1

cosθ
@�srr
@’ and @�srr

@θ , and
given distributions of the negative of the tractions,
�r3Ls’r rLð Þ and �r3Lsθr rLð Þ, obtained from mantle convec-
tion models.

2.4. Treatment of Radial Tractions
or Dynamic Topography

[17] The tangential tractions, t’r and tθr in equations (12)
and (13), arise from the horizontal component of the 3-D
convective flow. The vertical component, trr, that gives rise
to dynamic topography, could potentially play an important
role in affecting the total deviatoric stress field. In this sec-
tion, we will discuss ways of incorporating these radial
tractions in our calculation.
[18] There are two ways of dealing with the radial trac-

tions [Ghosh et al., 2008]. One way is to calculate them as
part of the lithospheric contribution. The other way is to
predict them from the mantle convection models. We will
first discuss the method that treats radial tractions as part of
the lithospheric contribution. The observed topography is a
combination of both static and dynamic parts. The former is
generated by shallow density buoyancies within the litho-
sphere, whereas the latter is produced by deeper density
buoyancies within the mantle. Hence, the depth integrals of
srr for the observed topography, down to a constant refer-
ence level (rL), already contain contributions from both
static and dynamic parts. In this case, the density variations
are obtained from a seismically constrained crust and upper
mantle structure that is uncompensated. Although the con-
tribution from dynamic topography is not explicitly known,
it is implicitly included in the calculation of the depth inte-
gral of srr.
[19] The second way is to treat the radial tractions as part

of the convection problem. From the dynamic topography
predicted by the respective convection models, the GPE
differences and the associated deviatoric stress field can be
calculated. This stress field is the response of the radial
tractions. These stresses can then be added to the stresses
obtained from tangential tractions, t’r and tθr, in order to
obtain the total stress field produced by the convection
model. This combined stress field is then added to the
deviatoric stresses from a compensated (equal pressure at the
reference level, rL) lithosphere model in order to obtain a
total lithospheric deviatoric stress field. The lithosphere
model must be compensated via elevation adjustment of the
crustal columns (removal of dynamic topography) such that
after the adjustment, the pressure at the reference level, rL,
is constant. Hence, this method deals with the additional step
of compensating the Crust 2.0 model by removing an esti-
mate of dynamic topography. Although the secondmethod is a
more self-consistent way of treating the radial component of
the mantle flow field, there are other problems involved in this
methodology. First, the compensation of the crustal model is
likely to introduce errors. For complete self-consistency, the
dynamic topography predicted by the convection model
should be identical to the dynamic topography computed
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through compensation of the Crust 2.0 model via elevation
adjustment. This is difficult to achieve, mainly because of
differences in resolution between the convection and the Crust
2.0 models. Moreover, the prediction of radial tractions in the
convection models are not necessarily compatible with
observations and strongly depend on the assumption of whole
mantle versus layered mantle convection [Wen and Anderson,
1997c]. Hence, although we have experimented with both
methods, we prefer the first method, avoiding the controversy
in predicting radial tractions in convection models. In this first
method, employed in this paper, the contribution of radial
tractions is assumed to be embedded in the total depth integral
of srr, from surface topography to reference level, rL.

2.5. Deriving Absolute Viscosity, Strain Rate,
and Velocity Through a Postprocessing Step

[20] The finite element (FE) model also generates strain
rates and velocities. Although the predicted deviatoric stresses
depend only on the effective body forces (driving forces) and
the relative viscosity distribution, the magnitudes of the pre-
dicted strain rates and velocities depend on absolute values of
the viscosities. The relative values of strain rates and velocities
are already defined within the model solution. The absolute
values of these (viscosities, strain rates, and velocities) is
obtained in a postprocessing step, which has no impact on the
stress solution. We first place our global velocity field in a
kinematic no-net-rotation (NNR) frame through the require-
ment that it satisfies

R
(v� r)dS=0, where v is the horizontal

surface velocity at position r and S is the area over the
Earth’s surface. Note that all motions were initially

determined relative to a small rigid spherical cap in the
center of Antarctica (–87.5 to –90 latitude). The transfor-
mation into an NNR frame simply involves finding the
single rigid body rotation to the entire global velocity field
that satisfies the NNR constraint in the equation above. We
then find the single scaling factor of the entire relative
global viscosity field (which before scaling varied between
values of 1.0 for the plates to values as low as 10� 3 for
rapidly straining regions) that minimizes the misfit of the
dynamic velocity field, in an NNR frame, with the kine-
matic NNR velocity field of Kreemer et al. [2006], defined
by GPS observations. The one single scaling factor therefore
defines the absolute values for the global viscosity field, strain
rate field, and velocity field. The best fit to this kinematic
model is obtained when an absolute viscosity of 1023 Pa-s is
chosen for the plates [Ghosh and Holt, 2012].

3. Deviatoric Stresses Due to GPE Differences

[21] We use the Crust 2.0 model to calculate GPE (Figure 1).
We calculate the depth integral of srr down to a constant
reference level, rL (in equation (7)), which is taken as 100 km
below sea level. A fixed mantle density of 3238kg/m3 is
assumed from the crustal base to the depth rL. The cooling plate
model based on ocean floor age data [Müller et al., 2008] with
revised parameters from Stein and Stein [1992] is used to define
densities for oceanic mantle regions. The Crust 2.0 model is
not compensated (unequal pressure at the reference level rL),
and we assume that depth integrals of srr down to reference
level rL already contain the contribution from the radial tractions
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Figure 1. Deviatoric stress distribution plotted at every 5� on GPE calculated from the Crust 2.0 model,
ETOPO1 and ocean cooling model. Tensional deviatoric stresses are shown by red arrows while compres-
sional deviatoric stresses are shown by black arrows. Length of the arrows are proportional to the magnitude
of vertically integrated stresses. Strike-slip regions are indicated by one tensional and one compressional pair
of arrows. High GPE areas are in deviatoric tension while low GPE areas are in deviatoric compression.
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responsible for dynamic topography. Elevated regions have high
GPE. Areas such as old ocean floors, trenches, and areas with
thick sediment cover such as off the coast of eastern India and
Africa and Gulf of Mexico, have low GPE. The deviatoric stress
field from GPE differences (Figure 1) shows deviatoric tension
in areas such as Andes, western North America, eastern Africa,
Tibetan plateau, and the mid-oceanic ridges, whereas areas with
low GPE show deviatoric compression. The Tibetan plateau
shows large N-S deviatoric tension (principal axes with values
of � 3� 1012 N/m), associated with large GPE contrasts with
the surrounding regions. We will later show that this N-S
component of deviatoric tension is cancelled out by a com-
pressive stress associated with basal tractions, generated by
large scale density buoyancy-driven mantle circulation.

4. Deviatoric Stresses Due to Mantle Buoyancies

4.1. Lateral Viscosity Variations in the
Convection Models

[22] In a previous paper, we have discussed the sensitivity of
different radially symmetric viscosity models in influencing
the lithospheric stress field [Ghosh et al., 2008]. Since one of
the goals of the present paper is to predict plate motions as
well, and since lateral viscosity variations are necessary to
generate plate motions, we restrict our discussion to models of
laterally variable viscosity structures only.
[23] We introduce lateral viscosity variations in our con-

vection models on the basis of major geological features. The
presence of weak plate boundaries has been argued to be a
major cause of viscosity differences within the lithosphere
[King and Hager, 1990; Zhong and Gurnis, 1995a, 1995b].
We introduce weak zones by assuming that the plate boundary
zones have a viscosity that is inversely proportional to strain
rates from Kreemer et al. [2003] andGhosh et al. [2009]. This
is a reasonable assumption, although it does not give insight
about the process by which plate boundary zones evolve to
possess such strain rate dependent weakness (equation 8). The
cold roots of continental cratons are also thought to be one of
the principal causes of lateral viscosity variations in the
shallow mantle. These high seismic velocity areas, seen in
seismic tomography images, have been attributed to a chemi-
cally different composition, having a much higher viscosity
than the surrounding mantle at the same depth [Jordan, 1978,
1988; Rudnick and Nyblade, 1999]. Age differences in the
oceanic lithosphere can also be a major factor in giving rise to
lateral viscosity differences. As the thickness of the oceanic
lithosphere varies with age, the mantle close to the ridges can
be expected to be weaker than that under old oceans. We
consider these first order features to introduce lateral viscosity
variations in both the lithosphere and the asthenosphere of the
convection models. The lower mantle is assigned a viscosity
10 times higher than the upper mantle. The lateral changes in
viscosity are confinedwithin the top 200 km, implying that our
models do not include viscosity variations due to slabs, which
have been considered in some other dynamic modeling studies
[cf. Alisic et al., 2012]. Since controversies abound regarding
the true strength of slabs [Zhong and Gurnis, 1995a; Moresi
and Gurnis, 1996; Zhong and Davies, 1999; Enns et al., 2005;
Stegman et al., 2006; Billen, 2008; Liu and Stegman, 2011],
we have decided not to address this issue in the present study.
The viscosity changes due to weak zones, as well as due to
strength differences between old and young oceans, are

confined within the lithosphere (top 100 km), whereas the
viscosity changes arising due to cratonic keels are extended to
depths below 100km.
[24] For each viscosity structure, we generate deviatoric

stresses computed via the method described in sections 2
and 3 and compare them with GSRM strain rate tensors as
well as with SHmax directions from WSM. In addition to
predicting stresses, we compute surface plate motions as
described in section 2.5. We also compute the poloidal and
toroidal components of velocity and expand them in spher-
ical harmonics up to degree and order 20. We compute
correlation between the kinematic and dynamic models for
each degree and sum them up to obtain a total correlation,
each for the poloidal (P/P0) and toroidal components (T/T0)
(Table 1). The power at each degree for the poloidal and
toroidal components are also computed and the ratio of to-
roidal/poloidal power (T/P) are calculated and compared
with the T/P ratio from the kinematic model. Based on the
match with the deformation indicators and plate motions, we
delineate a range of viscosity models that satisfy both these
constraints.

4.2. Generation of Toroidal Flow

[25] As mentioned earlier, the convective flow of the Earth
has a toroidal component in addition to a poloidal one,
which is responsible for the strike-slip motion along
transform fault boundaries. The generation of this toroidal
motion is, however, somewhat enigmatic. An incompress-
ible Boussinesq fluid can only give rise to a toroidal flow
field in the presence of lateral viscosity variations. More-
over, it has been shown by [Hager and O’Connell, 1979]
that there occurs an equipartitioning of the Earth’s poloidal
and toroidal energy at each degree of spherical harmonic
expansion. Toroidal flow cannot arise in two-dimensional
models of mantle convection and hence only 3-D models of
mantle convection can attempt to generate toroidal flow.
[26] In the past, a number of studies have attempted to gen-

erate toroidal motions in 3-D models of mantle convection.
Ricard and Vigny [1989] created toroidal flow in their Cartesian
model by imposing plate geometries as well as by determining
plate motions through a torque balance method. Gable et al.
[1991] also generated toroidal motion by imposing a hybrid
stress and velocity boundary conditions in their models of
spherical geometry. Both studies ignored lateral viscosity
variations. The first study to generate toroidal flow in a
dynamically self-consistent way was by Christensen and
Harder [1991]. However, because of small lateral viscosity
variations in their model, they were able to generate only a
very small percentage of the observed toroidal velocity.
Ribe [1992] included lateral viscosity variations in the litho-
sphere of his thin viscous shell and was able to give rise to a
substantial toroidal flow field. Bercovici [1995], on the other
hand, employed special rheology in order to generate suffi-
cient toroidal flow. Zhang and Christensen [1993] used a
temperature-dependent Newtonian viscosity model, as well
as strain rate dependent non-Newtonian model, to generate
toroidal motion in a dynamically self-consistent way. How-
ever, they failed to achieve the required toroidal/poloidal
partitioning ratio. Wen and Anderson [1997b] generated to-
roidal motion self-consistently in their convection model by
taking into account lateral viscosity variations in the litho-
sphere between continents and oceans. They found that a
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relative lateral viscosity difference of a factor of 30, along
with a weak asthenosphere, were able to generate a flow field
that matched the observed toroidal/poloidal ratio as well as
the observed plate motions. In the following section, we
discuss the various types of viscosity structures and explore
which models yield a good match to both the plate motion
and deformation indicator data.

5. The Viscosity Models

[27] Lateral viscosity variations are introduced in three
ways. The ocean floor age data of Müller et al. [2008] is
used to introduce lateral viscosity variations in the litho-
sphere; oceans older than 70 Myr are assigned higher vis-
cosities (1–3 orders of magnitude) than younger oceans
(Figure 2). The second way is to introduce strong cratons
within the continents using the keel model of Wen and
Anderson [1997a]. In some models the cratons are allowed
to reach into the asthenosphere up to a depth of 200 km,
whereas in some they are restricted to the lithosphere. That
is, we introduce lateral viscosity variations in both the lith-
osphere and within asthenosphere equivalent depths. The
strength of the cratons in the lithosphere vary between 1–4
orders of magnitude higher than reference upper mantle
viscosity whereas in the asthenosphere the keels range in
stiffness between 0.1 to 10 times the reference viscosity,
depending on the ambient asthenosphere viscosity. Higher
viscosity keels at asthenosphere depths could not be tested
due to convergence issues arising from such strong lateral
variations. The third way in which we generate lateral vis-
cosity variations is by taking into account weak zones. In a
few models we restrict the weakness to plate boundaries

alone; in others the continental deformation zones are also
included. The viscosities of the weak zones in the convec-
tion model are based on the strength of the weak zones in the
lithosphere model (discussed in section 2.1, equation (8)).
The thickness of the asthenosphere is 300 km and its vis-
cosity is varied between 1 and 2 orders of magnitude lower
than reference viscosity (Figure 2).
[28] As mentioned earlier, plate velocities and deviatoric

stresses predicted by the convection models are added to the
predictions from GPE differences and the combined results
are presented in Table 1. The global RMS misfit between the
combined plate velocities and plate velocities from Kreemer
et al. [2006] is calculated and presented in Table 1 under
“RMS”. The poloidal and toroidal components of plate ve-
locities are computed and expanded up to spherical harmonic
degree 20. A correlation coefficient for each degree and order
between the modeled poloidal, toroidal components, and those
from Kreemer et al. [2006] are calculated and the average of
that correlation is presented in the table (P/P0 and T/T0). A
simple arithmetic mean underestimates the population corre-
lation as the distribution of coefficients becomes negatively
skewed when they are greater than zero [Silver and Dunlap,
1987]. Hence, we have used Fischer’s z-transformation
[Fisher, 1921] to transform the correlation coefficients (r) to z
values before averaging them. In the next step we transform
the averaged z’s back to r. The models that yield a correlation
coefficient of greater than 0.80 with the stress indicators and
that which produce an RMS misfit of less than 10.2mm/yr for
plate motions as well as correlation coefficients of 0.90 and
above for both the average poloidal and toroidal components
are considered as successful models. The toroidal-poloidal
velocity ratio is also inspected to ensure that they are close
enough to the observed kinematic ratio.
[29] We test each of the lateral viscosity case separately as

well as in combination with each other. Various paired com-
binations of the above viscosity structures are tested against
the constraints of strain rate tensor information, RMS misfit
to surface plate motions, and toroidal-poloidal pattern and
velocity ratio. Table 1 lists majority of the lateral viscosity
models that we experimented with as well as the results of
quantitative analysis with stress indicators and plate motions.
The maximum global average correlation coefficient between
the modeled deviatoric stresses and the strain rate tensors
achieved by these models is 0.85 (� 0.02 at 95% confidence)
and the lowest RMS misfit with surface plate velocities is
10.1mm/yr. The z-values obtained from the correlation coef-
ficients satisfy a Gaussian distribution, where half of the 8588
areas possess a correlation coefficient of 0.85 or greater for the
optimal models. The models simultaneously showing a
correlation of 0.85 and an RMS misfit of 10.1mm/yr are
considered to be the most successful. These are the models 7,
8, 18, 31, 37, 45, 47, and 48. Not surprisingly, these models
also show the highest correlation with the observed poloidal
and toroidal components of plate motions.We have conducted
Z-tests to ensure that the correlation coefficients are
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Figure 2. Viscosity structure of the convection models. The
range of viscosities, relative to the reference viscosity of 1021

Pa-s, that are tested, are shown above or beside each type of
feature. For example, the continental viscosities in our models
range from 1 to 100 times the reference viscosity, that is,
1021� 1023 Pa-s, whereas the cratons range in viscosities
from 1022� 1025 Pa-s.

Table 2. Toroidal-Poloidal Velocity Ratio From the Kinematic Velocity Model [Kreemer et al., 2006] and the Best-Fitting Dynamic
Model (Model 47) for Spherical Harmonic Degrees 2–20

Degree 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Kinematic 1.25 1.95 0.56 1.38 0.57 0.83 1.57 0.94 1.27 0.85 0.63 1.02 1.25 0.77 0.92 0.68 1.22 1.69 1.51
Dynamic 1.01 1.90 0.32 0.92 0.32 0.56 1.50 0.69 0.79 0.80 0.48 0.76 1.15 0.67 0.72 0.51 0.87 0.98 1.46
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significantly different. For example, models with a value of
0.82 are statistically different from those with 0.85 at both the
95% and 99% confidence levels. The general trend that
emerges from the examination of the successful models is that
all of them have (1) a stiff lithosphere (1023 Pa-s), (2) a mod-
erately weak asthenosphere (1020 Pa-s), (3) either mild (1 or-
der of magnitude) or no lateral viscosity variations in the as-
thenosphere between depth of 100–200 km, and (4) at least 3
orders of magnitude of lateral viscosity variations in the lith-
osphere produced by either stiff cratons or high viscosity areas
of old oceanic regions or both. Presence or absence of weak
zones in the convection model do not seem to make any sig-
nificant difference as models with (37, 45, 47, 48) or without
(7, 8, 18, 31) weak zones are able to match the deformation
indicators and plate motions equally well. This could po-
tentially be due to the lower resolution (degree 31) of the
convection models. It should however be noted that the FE
lithosphere model takes into account these weak zones
within plate boundaries and they play a very important role
in determining the style of stresses [Ghosh et al., 2009].
[30] We had shown earlier [Ghosh et al., 2008] with

simpler flow models that had only radial strength variations
that a large viscosity contrast between the lithosphere and
the asthenosphere is necessary in order to achieve a good fit

to the deformation indicators. This seems to be true for
models that contain lateral viscosity variations as well. All
models with lithosphere weaker than 1023 Pa-s fared poorly
when compared to the strain rate tensors (Table 1) with
correlation less than 0.8 and the cases with lithosphere of
stiffness less than 1022 Pa-s show extremely poor correlation
(16, 21–24, 28–29). As for comparison with plate motions,
most of the less strong lithosphere cases show poor corre-
lation for the poloidal and toroidal components of velocity
and a high RMS velocity misfit. A strong (1021 Pa-s) as well
as a very weak (1019 Pa-s) asthenosphere fails to match
deformation indicators (1, 4, 11, 15-17, 19, 21, 24–26, 29,
35, 36, 43, 44), about half of them also failing to fit plate
motions (1, 11, 21, 24, 29). Also, having strong lateral varia-
tions in the asthenosphere degrades the fit to observations.
Models with just 2 orders of variations at asthenosphere
depths (100–200 km) do not fit surface velocities as well
(1, 30, 46). Several models can be deemed successful; how-
ever, if we have to choose a single model, it would be model
47, which has up to 6 orders of magnitude of lateral viscosity
variations in the lithosphere due to cratons, age differences in
the oceans, and weak plate boundaries. It also has one order of
lateral viscosity variations in the asthenosphere because of the
presence of keels. It yields a combined correlation coefficient
of 0.85 with the strain rate tensors, an RMS misfit of 10.1mm/
yr with global plate velocities, a correlation of 0.94 and 0.92 for
the poloidal, toroidal components of plate motions, and a
comparable toroidal/poloidal ratio with the observed (Table 2).

6. Deviatoric Stress Field and Plate Motions
From the Successful Models

[31] All the models that yield a good fit to both the con-
straints of plate motions and deformation indicators display
a similarity in the long-wavelength pattern of tractions
(t’r, tθr, equations (12) and (13), Figure 3), applied to the FE
lithosphere model at 100 km. These models show greater
flow velocities at depth compared to the reference level rL in
areas of downwelling flow, such as central Asia, the South-
east Asian subduction zone, South America, and eastern
North America. The same depth dependence of flow velocity

10e6 N/m^2

Figure 3. Global distribution of horizontal tractions, �tr’,
trθ, at the reference level rL (100 km depth) based on a con-
vection model with laterally variable viscosity structure in
the lithosphere and asthenosphere (model 47 in Table 1).
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Figure 4. Global distribution of deviatoric stresses resulting from tractions in Figure 3.
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magnitudes applies to upwelling regions, such as East Africa
and the Pacific. The flow velocity directions at greater depth
will be in the direction of the traction associated forces shown
in Figure 3. The traction magnitudes range from 5–10MPa
and their patterns hold a similarity with driving tractions for
uniform thickness plates obtained by van Summeren et al.
[2012]. The downwelling flow is caused by deeper density
buoyancies of old subducted lithosphere. Similarity in the
magnitude and distribution of tractions for all successful
models also means similarity in the resultant deviatoric stress
pattern (Figure 4). Hence, here we present the results of one
of our successful models (model 47 in Table 1). The com-
bined stress field, from GPE differences and basal tractions,
(Figure 5) as well as the correlation coefficients with the
strain rate tensor information (Figure 7), are also shown for
this particular model. The viscosity model that generates the
tangential tractions and plate motion predictions combines all
the three features of weak plate boundaries, continental keels,
and old versus young oceanic lithosphere. Table 3 lists the total
correlation coefficients as well as the correlation coefficients
averaged over certain regions, between the predicted deviatoric
stress tensors and the GSRM strain rate tensors, from GPE

contribution alone, basal tractions from model 47, and the
combined GPE plus traction contribution. The combined case
yields the best fit to the strain rate model. The GPE contribution
seems to be playing a lesser role compared to the tractions (0.60
versus 0.84). The best-fit models favor a higher coupling to
satisfy both the stress indicators and plate motions globally.
However, this high average coupling poses problems locally
for several regions of continental deformation, particularly
western North America. This apparent need for heterogeneity
of coupling, potentially resolved through the incorporation of
smaller scale convection [e.g., Faccenna and Becker, 2010], is
the next difficult problem to solve for global dynamic models.
[32] The magnitudes of principal axes of deviatoric

stress from tractions, which range from 20–60MPa, are
somewhat larger than those from lithospheric GPE differences
(10–40MPa, Figure 1). The total depth integrated deviatoric
stress field (Figure 5), which is the combined deviatoric stress
field from lithospheric GPE differences (Figure 1) and mantle
convection (Figure 4), shows significant changes from both
Figures 1 and 4. For example, in Tibet, GPE differences pre-
dict deviatoric tension, whereas stresses from mantle tractions
alone predict compression. However, the combined stresses
show dominant strike-slip deformation in that area. The
magnitudes of the second invariant of total deviatoric stresses
range from 20–100MPa for most areas (Figure 6).
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Figure 5. Combined deviatoric stresses from GPE differences (Figure 1) and basal tractions (Figure 4).

Table 3. Correlation Coefficients, Averaged for a Particular Region,
Obtained From a Comparison Between the Deviatoric Stress Tensors
From GPE Differences, Tractions From One of Our Successful Mod-
els (Model 47 in Table 1), Combined GPE Plus Traction Model, and
Strain Rate Tensors From the GSRM Model

Region of Interest
Number
of Areas GPE Tractions

Combined GPE
Differences Plus
Basal Tractions

Western North America 618 0.46 0.81 0.78
Andes 440 –0.16 0.98 0.93
Eastern Africa 865 0.32 0.91 0.87
Mediterranean 352 0.68 0.59 0.75
Central Asia 995 0.25 0.62 0.61
Indo-Australian plate
boundary zone

836 0.84 0.84 0.90

Mid-oceanic ridges 916 0.94 0.96 0.97
Western Pacific 538 0.42 0.87 0.84
Southeast Asia 800 0.59 0.77 0.82
Total 8588 0.60 0.84 0.85

Figure 6. Second invariant of deviatoric stresses from our
best-fitting dynamic model. Figure from supplementary sec-
tion of Ghosh and Holt [2012].
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[33] The deviatoric stress tensors from the combined influ-
ence of lithospheric GPE and mantle circulation (Figure 5)
shows an improvement in fitting the strain rate tensors in the
plate boundary zones compared to stresses from mantle
circulation only. The improvement occurs in most areas,
especially in areas of continental deformation (Table 3 and
Figure 7). Areas such as the Andes, continental Africa,
Indo-Australian plate boundary zone, eastern Asia, and the
mid-oceanic ridges show an excellent fit to the strain rate
tensors. The fit, however, is poor in areas such as Baikal in
Asia, New Zealand, and also in a few areas in western
USA. The overall fit for the combined case is 0.85 for
model 47 (Table 3), with a confidence interval of 0.84–0.86
at 95% significance level.
[34] We compare the most compressive principal axes

directions and styles of our predicted deviatoric stresses
from our best fitting combined model and the horizontal
most compressive principal axes of stresses in the WSM
[Zoback, 1992; Reinecker et al., 2005]. WSM is a compi-
lation of measured principal stress directions based on
earthquake focal mechanisms, borehole breakout data and
Quaternary fault slip directions. We use the WSM data in-
terpolated on our 1��1� grid (Figure 8a). This interpolated
dataset is compared with the most compressive principal
axes of deviatoric stress from GPE differences and tractions
combined (from model 47, Figure 8b). A qualitative com-
parison shows large swathes of regions which demonstrate
an excellent match. That is, in those areas, the difference in
most compressive principal axes directions between our
predicted stresses and those from WSM is less than 15� and
the style of stresses also match. We also compute correlation
coefficients between the combined deviatoric stresses from
model 47 and the WSM stress tensors (Figure 8c). The style
of stresses along the mid-ocean ridge (MOR) does not
everywhere match the WSM SHmax styles, which display
mostly strike-slip type of behavior in these regions. This
arises mainly because of the dominance of some big strike-
slip type earthquakes at the transform fault boundaries
connecting ridge segments, and a relative paucity of moment

release in normal fault earthquakes along the ridges them-
selves. The GSRM tensor field, on the other hand, possesses a
dominant signal associated with the spreading process at the
mid-oceanic ridges, in agreement with the dominant tension at
the mid-oceanic ridges. The other notable misfit between the
predicted stresses and the WSM occurs in many regions of the
outer rise of the trenches, where normal faulting associated
with slab bending occurs [Stern, 2002]. The methodology that
we employ does not include flexural stresses, thereby
explaining this systematic misfit along the outer rise regions.
[35] One of the goals of this study is to match stresses in

complex orogenic zones. The principal deviatoric stresses
(Figure 9a) and their corresponding SHmax axes (Figure 9b) in
western North America shows opening of Basin & Range and
strike-slip along the San Andreas fault. There is compression
within the Juan de Fuca trench and the Cascadia forearc
exhibits N-S compression. However, within the region of
the Eastern Snake River Plain and Yellowstone, the
extensional directions of deviatoric stresses are different
from observed. This problem is associated with too much
coupling with mantle flow in this model. The higher
coupling produces too much compression across the
Yellowstone region, the central Rockies and Colorado
Plateau, thereby dominating the important signal from
topography and lithosphere structure in these regions. We
also examine the stress field in two other deformational
areas, the central Mediterranean region (Figures 9c and 9f)
and the India-Asia collision zone (Figures 9d and 9e). The
predicted stresses in Tibet show a predominantly strike-slip
style of deformation (also mixed with normal fault style
deviatoric stress) and a rotation of SHmax within Tibet
around the Eastern Himalayan Syntaxis region, similar to
what is observed there (Figure 8a). This dominant strike-
slip style of deformation is only obtained when mantle
traction contribution is added to the contribution from GPE
differences. The rotation of stresses within Eastern Tibet is
mainly associated with contribution from shallow structure. In
the Mediterranean region, the modeled stresses are compatible
with findings of the deformation field there [Kahle et al., 2000;
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Figure 7. Correlation coefficients between deviatoric stress tensors arising from combined GPE differences
and basal tractions (Figure 5) and observed strain rate tensors from the Global Strain Rate Map. Figure from
supplementary section of Ghosh and Holt [2012].
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Jenny et al., 2004;Kreemer and Chamot-Rooke, 2004;Ozeren
and Holt, 2010], although the global model presented here
does not produce enough extension within the southern Ae-
gean Sea region, which is almost certainly due to the fact that
the mantle flow component used here is long wavelength and
lacks the important effects of smaller scale convection in this

region (slab roll-back) [Faccenna and Becker, 2010;
Faccenna et al., 2007]. Elsewhere the global model does an
excellent job at predicting deformation within the Aegean and
Eastern Turkey. The Hellenic arc shows trench-perpendicular
compression whereas strike-slip deformation is seen along the
North Anatolian fault.
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Figure 8. (a) SHmax directions (maximum horizontal stress orientations) from theWorld StressMap averaged
within 1��1� areas. Red indicates normal fault regime, blue indicates thrust regime, whereas green denotes
strike-slip regime. (b) Most compressive horizontal principal deviatoric stress axes from our best-fitting dy-
namic model (model 47). The colors indicate the strain environment predicted by the deviatoric stresses in
the dynamic model. Red indicates the maximum horizontal compression orientation in a normal fault regime,
blue indicates maximum horizontal compression in a thrust fault regime, and green denotes maximum horizon-
tal compressive stress direction in a strike-slip regime. (c) Correlation coefficients between the predicted stress
tensors from the above model and the WSM stresses. Modified from Ghosh and Holt [2012].
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[36] The surface plate velocities from our best-fitting
model are presented here (red arrows in Figure 10) in an
NNR frame along with velocities from the NNR kinematic
model of Kreemer et al. [2006] (blue arrows). The modeled
dynamic velocities match the kinematic velocities extremely

well in most places. In Australia and in the southern Indian
Ocean, the modeled velocities are offset from the kinematic
by a few degrees. Also, we do not fit the motion of Cocos
plate very well; we predict an easterly motion for the plate
while the observed motion is northeasterly. The average
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Figure 9. Deviatoric stress prediction from model 47 in the (a) western US, (c) central Mediterranean,
and (d) India-Asia collision zone plotted on top of ETOPO1 topography. The most compressive principal
axes of the stress tensors for the above regions are shown in Figures (b), (e), and (f). The color coding for
Figures (b), (e), and (f) is the same as in Figure 8. Modified from Ghosh and Holt [2012].
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global RMS misfit for this particular model with the kine-
matic NNR surface velocities is 10.1mm/yr. We also cal-
culate poles of rotation of major tectonic plates from our
dynamic models (Table 4) (expanded from the seven plate
results in Ghosh and Holt [2012]) and they are close to the
rotation pole estimates from the latest NNR kinematic model,
MORVEL [Argus et al., 2011; DeMets et al., 2010]. The
North and the South American plates, Capricorn, Amurian
plates show almost perfect fit to the poles of rotation. The
predicted poles of Pacific, Europe, Nubia, Nazca, Somalia,
and Arabia also lie fairly close to the observed locations.
[37] The strain rates predicted by our best fitting model

(Figure 11) shows large swathes of nondeforming areas or low
strain rates in the intraplate regions. Within the plate boundary
zones, including a few continental deformation zones, strain
rates are higher, between 50� 5000� 10� 9 yr� 1. These
values are consistent with observations in the deforming areas
of the Earth [Kreemer et al., 2003]. The absolute viscosity
values from our best fitting model, obtained by seeking a
single scaling factor of the entire effective viscosity field that
yields a best fit with the NNR surface motions of Kreemer

et al. [2006], shows plates with values of 1023 Pa-s, with the
weaker areas between 1019 and 1022 Pa-s (Figure 12) within
the plate boundary zones.

7. Discussion and Conclusion

[38] In our earlier studies [Ghosh et al., 2006, 2008], we had
demonstrated how contribution from density driven mantle
convection is necessary to predict the right style and orientation
of stresses in many areas of the Earth, especially in continental
deformation areas. However, the convectionmodels that we had
used were simpler with only radially variable viscosities and no
lateral variations. In the present study we introduce lateral vis-
cosity variations in the lithosphere and asthenosphere of our
convection models to investigate the role of these in predicting
the lithospheric stress field and plate velocities. An advantage of
including lateral viscosity variations is it helps to delineate the
nature of lithosphere-mantle coupling. Moreover, these lateral
strength variations also enable us to include a second constraint,
global plate motions, including toroidal-poloidal velocity ratio,
in our quest of finding a best-fit coupling model.
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Figure 10. Kinematic no-net-rotation (NNR) model from Kreemer et al. [2006] (blue arrows) along with
predicted velocities from our global dynamic model (red arrows) in an NNR frame. The dynamic model
includes contributions from both coupling with whole mantle convection and from lithosphere structure
and topography. Modified from Ghosh and Holt [2012].

Table 4. Angular Velocities of Major Plates as Predicted by Our Dynamic Model Compared With Kinematic Velocities From NNR-
MORVEL [DeMets et al., 2010; Argus et al., 2011]

Plate

Kinematic Dynamic

lon lat o�/Myr lon lat o�/Myr

North America –80.64 –4.85 0.209 –85.89 –1.31 0.141
South America –112.83 –22.62 0.109 –112.22 –31.15 0.137
Europe –106.50 48.85 0.223 –105.65 61.97 0.297
Nubia –68.44 47.68 0.292 –90.10 45.29 0.236
Pacific 114.7 -63.58 0.651 106.84 –58.28 0.585
Nazca –101.06 46.23 0.696 –96.01 59.97 0.633
Arabia –8.49 48.88 0.559 13.58 51.06 0.597
Australia 37.94 33.86 0.632 49.13 10.86 0.599
Cocos –124.31 26.93 1.198 –103.19 37.35 0.778
Somalia –84.52 49.95 0.339 –106.02 42.803 0.340
India –3.29 50.37 0.544 –51.75 48.00 0.522
Amuria –122.82 63.17 0.297 –121.80 69.84 0.351
Philippine –31.36 –46.02 0.910 –22.07 –71.22 0.547
Sunda –95.02 50.06 0.337 –89.00 76.29 0.406
Capricorn 23.09 44.44 0.608 17.08 43.19 0.457
Antarctica –118.11 65.42 0.250 –108.48 50.79 0.311
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[39] Based on the numerous models that we experimented
with, a stiff lithosphere (1023 Pa-s) is essential in matching
deformation indicators as well as surface velocities. Our earlier
study [Ghosh et al., 2008] had argued for a large lithosphere-
asthenosphere viscosity contrast on the basis of matching the
deformation indicators only. Ghosh et al. [2010] had also
showed the necessity of a stiff lithosphere based on fitting the
Earth’s long-wavelength geoid. The stiff lithosphere influences
intraplate rigidity that is evident from the strain rates predicted
by our best fitting model (Figure 11) where the intraplate areas
are straining at very small rates, 1� 4� 10� 9/yr. The viscosity
of the asthenosphere is also important in determining the best
fitting model. Only a moderately weak asthenosphere (1020

Pa-s) is able to match the observational constraints. A stronger
or a weaker coupling, produced using 1019 Pa-s and 1021 Pa-s,
respectively, does not produce as good a fit. Many studies have
argued for the existence of a low viscosity channel below the
lithosphere. In fact, the plate motions predicted by Wen and
Anderson [1997b] with a uniform low viscosity asthenosphere
in their convection model, matched the observed plate motions
quite well. This study has shown that such a viscosity model
also does a very good job of matching the strain rate tensor
information along the deforming plate boundary zones. An-
other important observation of this study is that the presence of
lateral viscosity variations in the asthenosphere is not a nec-
essary condition to match the surface observations. In fact,
strong lateral variations in the asthenosphere degrade the fit to
observations. Models with no or only weak (an order of
magnitude) lateral variations in the asthenosphere give the best
results. This has been argued earlier by Naliboff et al. [2009]
by looking at stress magnitudes in the vicinity of continental
keels. Also, all successful models have strong (at least 3 orders
of magnitude) lateral viscosity variations in the lithosphere
generated by stiff cratons and/or strong old ocean floor. A
strong lateral viscosity contrast generates sufficient toroidal
motion that satisfies the observed plate motions as well as near
equipartitioning of toroidal-poloidal velocity ratio.
[40] An important aspect of our study is constraining

deviatoric stress magnitudes in the lithosphere. The magni-
tudes of depth integrals of compressive deviatoric stress
from the combined GPE differences and convection models
are 3� 7� 1012 N/m (30–70MPa as a depth average), with
the largest stresses occurring within the Indo-Australian
plate region and southeast of South America in the Atlantic.
The stress magnitudes in most parts are consistent with

stress magnitudes of earlier studies [Richardson, 1992]. In
other parts, our stress magnitudes are larger by a factor of 2.
These areas of large stress magnitudes are outside the
deforming plate boundary zones in the GSRM (Figure 6).
Within the Australian plate, we predict peak compressive
deviatoric stresses of about 7� 1012 N/m (with second
invariant of deviatoric stress approaching 100MPa). How-
ever, within the Indo-Australian plate deforming zone, our
predicted compressive deviatoric stresses range from
3� 6� 1012, which are � 25% those of Cloetingh and
Wortel [1986], who calculated stresses of 2–3 kilobars in the
Indo-Australian plate boundary zone region. Our deviatoric
stress solution within the Indo-Australian plate boundary
zone is now consistent with stress magnitudes cited by
Molnar et al. [1993], which they argued are sufficient to
cause buckling and deformation of the Indian Ocean litho-
sphere. The higher magnitudes that we obtain in this study,
in comparison with previous studies [Ghosh et al., 2008,
2006], arise from the higher coupling with mantle flow,
required to obtain a best-fit with global plate motions.
However, Coblentz et al. [1998] predicted stress magnitudes
smaller than ours in the Indo-Australian plate boundary
region. Principal axes of deviatoric stresses at the Tibetan
Plateau are between 2� 3� 1012 N/m. The stress magni-
tudes of horizontal axes of compression in continental Eur-
ope are large, � 5� 6� 1012 N/m, whereas those in North
America are between 4� 6� 1012 N/m.
[41] Comparison of our predicted best fitting traction field

with the surface velocities (Figures 3 and 10) indicates
whether tractions are driving or resisting [Ghosh and Holt,
2012]. If mantle flow field is leading plate motion, tractions
are driving, whereas they are resistive if mantle flow is
trailing the plate. We devise a way of quantifying this driv-
ing versus resisting nature of tractions by computing the
cosine of the differential angle between the traction and the
velocity vectors at each point and multiplying them by
the traction magnitudes weighted by the area (Figure 13). In
areas like the Nazca plate, eastern North America, North
Atlantic and western Europe, eastern Siberia, northeastern
and northwestern Africa, Indian and Australian plates, and
western part of the Pacific plate, the values are positive,
indicating that tractions are driving in those regions. In these
places both tractions and plate motions in an NNR frame act
in similar directions and thus mantle flow is leading the plate
motion. On the other hand, in areas such as western North
America, the northern part of South America, and southern
Africa, the values are negative. That is, tractions are resistive
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Figure 11. Strain rates predicted by model 47. The very
small strain in the intraplate areas indicate that we are able
to achieve rigid plates from our dynamic models. Figure
from Ghosh and Holt [2012].
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as plate motions are leading mantle flow. This observation
addresses the controversy of whether mantle tractions are
driving or resistive. Tractions are resistive within the vicinity
of many oceanic ridge systems (Figure 13). Comparison
of Figures 2 and 4, however, indicates the importance of
tractions in producing extension along many of the ridge
systems. The extensional influence of the tractions along the
weak oceanic ridges in the Atlantic and much of the Indian
Ridge is associated with large-scale flow patterns (Figure 3).
These large-scale flow patterns reflect a primary influence of
downwelling associated with subducted lithosphere (Farallon
slab, subduction beneath South America, and subduction his-
tory beneath central and Southeast Asia). Such a large-scale
flow pattern has been argued by Becker and Faccenna [2011]
to be a major driving pattern for India and Arabian plates. That
these tractions are resistive in places near the ridges indicates
that, within these ridge-regions, the large-scale flow associated
with the major downwellings dominates over any smaller-scale
mantle flow involved with the sea-floor spreading process.
[42] We achieve the highest correlation coefficient of 0.85

between our predicted deviatoric stresses and the deformation
indicators (Tables 1 and 3) and an RMS misfit of 1 cm/yr for
surface motions. There still exists some misfit between our
predictions and the observed plate motions and deformation
indicators. The remaining misfit for the deviatoric stress field
and the plate motions might arise from a number of different
factors. For example, although our lithosphere model is a high
resolution one (1� 1 degree), the convection model is of
much lower resolution (degree 31). The fit of the model to
observations could certainly be improved by taking into
account small-scale convection, which would require a higher
resolution mantle convection model. There occurs substantial
viscosity differences between the narrow weak plate bound-
aries and the more rigid plate interiors. These variations might
play an important role. Although, our thin sheet lithosphere
model takes into account these narrow weak zones, a degree
31 convection model may not be sufficient to handle these

structures. In order to consider these weak, narrow plate
boundaries, it is necessary to use a much higher resolution
convection model. The model could also likely be improved
through the use of a better structure model (within both the
lithosphere and the mantle). However, this potential improve-
ment is unlikely to change our conclusions about the relative
role of shallow versus deeper sources and about the need for a
dominance of driving tractions within many regions.
[43] One of the most important characteristics of the present

study is joint prediction of stresses and plate motions in one
self-consistent model. We have used both these constraints to
delineate possible viscosity structures for the upper 200 km of
the Earth. Second, we have incorporated the effects of
topography and lithosphere structure, in addition to the
contribution from mantle flow. We also quantify the relative
contribution of these two driving forces, which is a contro-
versial problem. We have shown that it is possible to fit both
the observations of plate velocities and deformation indicators
within the plates as well as in the plate boundary zones
accurately, taking into account contribution from topography
and lithosphere structure coupled with long-wavelength
mantle tractions. Third, we have addressed the controversy
regarding the relative contribution of driving versus resisting
tractions and how this varies over the Earth’s surface. Finally,
our convection model is fully self-consistent with radial and
lateral viscosity variations that are strong enough to generate
sufficient toroidal motion. In order to fine-tune our models,
additional constraints such as geoid and dynamic topography
could be used. An accepted model would be one that is
capable of matching all the four constraints of deviatoric
stress field, plate motions, geoid, and topography.

Appendix A: Benchmarking

[44] We have shown earlier ([Ghosh et al., 2008], online
Supporting Information) that the thin sheet approximation is
able to recover the depth integrals of deviatoric stresses in
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Figure 13. Plot of t� cosθ dA, where θ is the angular difference between tractions at the base of the
lithosphere and surface velocity vectors in an NNR frame, t are the traction magnitudes and dA are 1 x
1 degree areas, normalized by Earth’s radius squared. This gives a quantitative indication of whether
tractions are driving (positive) or resistive (negative). For example, at equatorial regions, a value of
2000 corresponds to a driving traction of about 6.5 MPa.
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the presence of large-scale three-dimensional flow for a case
with only radial viscosity variations and no lateral varia-
tions, that is, a poloidal only case. This test demonstrated
that our FE approach is correct and that while using the thin
sheet approximation we are nevertheless able to recover
horizontal stresses associated with dynamic topography and
horizontal tractions associated with long-wavelength 3-D
whole mantle convection. Here we demonstrate the suit-
ability of the method in the presence of both poloidal and
toroidal flow (both radial and lateral viscosity variations).
We show this for a finer grid of 1��1� whereas our prior
experiment was on a coarser (2.5��2.5�) grid. The sole
purpose of this test is to check whether the vertically inte-
grated deviatoric stresses from the thin sheet model can
recover the deviatoric stresses from the 3-D convection
model that possesses lateral viscosity variations. For this pur-
pose we use an arbitrary lateral viscosity structure that has
different strengths based on oceanic versus continental
regions. The oceanic regions are assigned a viscosity of 1022

Pa-s whereas the continental regions are assigned a viscosity
30 times higher than that. The model has a weak (1019 Pa-s)
asthenosphere up to 400 km, below which the upper mantle
viscosity is constant at 1021 Pa-s with a 10 times stronger
lower mantle. In the 3-D convection computation, the original
1��1� viscosity structure is expanded into spherical harmo-
nics degree. We use l=12 here. The convective calculations
yield both horizontal and radial tractions. Here we will show
that the combined deviatoric stress field from the horizontal
and radial tractions used as input into the FE model with thin
sheet approximation matches the full 3-D stress field from the
convection model in the presence of lateral viscosity varia-
tions. In order to prove this, we need to take the original lateral
viscosity structure (described above) and expand it to l=12
and use this viscosity structure as input in the FE thin sheet
model (Figure A1).

[45] The horizontal tractions generated by the 3-D convec-
tion model at a depth of 100 km are applied at the base of
the FE lithosphere model, and the deviatoric stresses are
computed via the thin sheet method (Figure A2a). Next, the
dynamic topography, predicted by the same convection
model, is used to calculate depth integrals of srr, or GPE,
assuming PREM as the background density model. The
resultant GPE variations are because of the presence of
dynamic topography. From these GPE differences, deviatoric
stresses are calculated via the thin sheet method (Figure A2b).
Areas of positive dynamic topography (red and white) are in
tension whereas those with negative dynamic topography (in
blue) are in compression. It is to be noted that this stress field
arises solely from the radial tractions (dynamic topography).
In the next step, the stresses from horizontal tractions (Figure
A2a) are added to those from radial tractions (Figure A2b) in
order to obtain an estimate of the depth integral of the total
stress field (Figure A3a).
[46] When the combined stress field obtained above is

compared to the deviatoric stress field calculated directly
from the full 3-D convection model (Figure A3b), we see
an almost perfect match. For a quantitative comparison, we
compute the correlation coefficients between the two
deviatoric stress fields (Figure A4a). Most regions show a
perfect correlation of 1. The differences that occur are in a
few transitional areas, where stresses are very small. We
also compute the ratio of the second invariants for the re-
spective stress fields, T1/T2 (Figure A4b). Here T is given by

T¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2’’þt2θθþt2rrþt2’θ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t2’’þ2t’’tθaþ2t2θθþ2t2’θ

q
,

where tij are the deviatoric stresses. The correlation coeffi-
cient quantifies the quality of fit of the two stress fields in
terms of direction and style, whereas the ratio of the second
invariants gives a measure of fit in terms of magnitude for the
two stress fields. For most of the surface areas, the stress
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Figure A1. Lateral viscosity structure expanded into spherical harmonic degree 12 that is used as input viscosity in the thin
sheet calculation for the benchmarking. The values are relative to a reference viscosity. The continents here have a higher
viscosity than the oceanic regions.
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Figure A2. Deviatoric stress field computed via the thin sheet method from: (a) horizontal tractions generated by a 3-D
convection model at 100 km depth, and applied to the base of the thin sheet, plotted on topography, and (b) radial tractions
plotted on top of GPE (scale bar). The GPE is calculated from dynamic topography predicted by the 3-D convection model.
The radial component of the 3-D mantle flow gives rise to the dynamic topography. These two solutions added together,
define the total solution, which can be compared with the horizontal field from the 3-D mantle convection model.
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Figure A3. (a) Total deviatoric stress field obtained by adding stresses due to horizontal (Figure A2a) and radial (Figure
A2b) tractions via the thin sheet method. (b) Deviatoric stress field obtained from the full 3D convection model. Note the
similarity between Figures A2a and A2b.
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magnitudes are a near-perfect match. Differences in magni-
tude arise near some areas with strong viscosity contrasts as
well as within regions of transition where stresses are
predicted to be very small. In these regions, differences in
magnitude are around a factor of 2. In summary, we have
shown that the thin sheet approximation method that we use
has done a remarkably good job of recovering the styles
stress field from a full 3-D convection model when lateral
viscosity variations are present. In most regions the model
recovers the correct stress magnitudes, with differences as
high as a factor of 2 in some regions possessing strong
viscosity contrasts.
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