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It is widely accepted that the Earth’s magnetic field is 
powered by a convection-driven dynamo operating in 
its liquid iron core. The twentieth century witnessed 
remarkable advances in the field of magnetohydro-
dynamics, which eventually led to three-dimensional 
computer simulations of the geodynamo. In this  
review we look at the significant developments that 
shaped our present understanding of magnetic field 
generation in the Earth’s core. We also examine the 
successes and shortcomings of current geodynamo 
models. 
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Introduction 

THE Earth has a large-scale dipolar magnetic field, a fact 
of historical importance because of the role of the mag-
netic compass in the exploration of our planet. The mag-
netic lines of force originate from the magnetic North and 
South Poles, which are presently about 11.5° away from 
the geographic North and South Poles. The Earth’s mag-
netic field acts as a shield against high-energy particles 
from the Sun and outer space, thereby protecting our  
atmosphere and the life that it supports. No better reason 
can be given for understanding the Earth’s magnetic field 
and its evolution over 4 billion years. The Earth’s field 
has varied considerably over geological time, sometimes 
being weak, sometimes strong and intermittently revers-
ing direction completely, so that North becomes South 
and South becomes North. This pattern of changes,  
and notably the polarity flips, have left a distinctive  
fingerprint on the surface of the Earth. Palaeomagnetists 
examine rocks and seabed sediments which formed in  
ancient times to follow the long-time behaviour of  
the geomagnetic field. For instance, magnetic minerals 
crystallize in cooling lava flows and orientate themselves 
towards the magnetic North Pole. This magnetic record  
is permanently locked in the rocks when they harden. 
Data from volcanic rocks and sediments show that the 
last flip in magnetic field polarity occurred about 780,000 
years ago. Direct vector measurements of the geomag-

netic field were pioneered by Carl Friedrich Gauss in the 
1830s, and since the 1960s an excellent global distribu-
tion of the field has been provided by satellites. However, 
at lengthscales shorter than 2600 km the core magnetic 
field is obscured by the remnant crustal field, thus  
limiting our knowledge of the field in the planet’s deep 
interior. 
 The concept of magnetic field generation goes back to 
Michael Faraday, who showed that an electrical conduc-
tor moving in a static magnetic field produces an electric 
current. This was the principle behind his disk dynamo, 
which consisted of a conducting disk spinning in a mag-
netic field. The next step was to examine whether this in-
duced electric current could, in turn, produce a magnetic 
field that reinforces the original field. A disk dynamo can 
be designed such that the induced electric current flows 
through a loop in the same direction as the sense of spin1; 
this results in an induced magnetic field that points in the 
same direction as the pre-existing field. It was Larmor2 
who first suggested that an electrically conducting fluid 
in which suitable motions were produced could sustain 
magnetic fields in the Sun and Earth. Earlier studies in 
seismology3,4 had already led to the inference that the 
Earth’s outer core is liquid because of its inability to 
transmit transverse (shear) waves. Hence Larmor’s idea 
of a self-excited fluid dynamo was an attractive proposi-
tion for the Earth. Why do we need a dynamo theory for 
the Earth? If there were no fluid motions in the core, any 
primordial magnetic field would have decayed away on a 
timescale of ~ 104 years1. Yet, the Earth has had a mag-
netic field for ~ 109 years, which can be explained by a 
process of field generation through induction in its core. 
Fluid motion in the outer core is thought to be driven  
either by natural convection or by buoyant plumes of 
light material released from the boundary of the inner 
core as pure iron crystallizes5. The presence of dissolved 
radioactive heat sources cannot be ruled out. The iron-
rich core ensures that the motion of the fluid in a mag-
netic field is an inductive process that generates new 
magnetic field through stretching and twisting of flux 
tubes by the background velocity, the process being  
limited by magnetic diffusion. Alternative mechanisms 
for generation of the Earth’s magnetic field, such as 
thermoelectric and electrochemical effects, have been 
proposed, but they cannot plausibly provide the energy 
required to maintain the observed field. 
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 Although observation of the Earth’s magnetic field has 
a long history of over 400 years6, geodynamo theory 
made significant progress only in the last century due to 
advances in the subject of magnetohydrodynamics 
(MHD), which deals with the flow of electrically con-
ducting fluids in magnetic fields. The development of 
numerical methods and solutions and the advent of fast 
computers aided this progress. The self-consistent  
dynamo problem requires solution of the MHD equations, 
which simultaneously determine the magnetic field,  
velocity and temperature (or composition) in a conduct-
ing fluid. Recent advances in computational ability have 
enabled us to perform three-dimensional simulations of 
the geodynamo, which provide realizations of geomagnetic 
field features such as the dipolar structure, secular varia-
tion (time-changes of the magnetic field), high-latitude 
magnetic flux concentrations and polarity reversals. The 
aim of this article is to discuss the progress made over the 
decades in modelling the geodynamo and the challenges 
that lie ahead. This review is by no means exhaustive;  
aspects of the geodynamo not covered here can be found 
in earlier reviews7–11. 

Early developments in geodynamo theory 

It was natural for early investigators to consider rotating 
MHD systems in which both the velocity and magnetic 
fields were axisymmetric. As the Earth’s external field is 
essentially a dipole, one might look at a steady, axisym-
metric dynamo in which the magnetic field B is poloidal, 
(Br, 0, Bz) in cylindrical polar coordinates (r, θ, z). The 
electric current j is then toroidal, (0, jθ, 0). The velocity 
field u is also poloidal. Cowling12 considered such an ide-
alized system and concluded that an axisymmetric mag-
netic field could not be supported by axisymmetric fluid 
motions. His argument was that an axisymmetric poloidal 
field always has a neutral ring where B, and hence j are 
zero. This anti-dynamo theorem showed that nonaxisym-
metric configurations had to be considered to make pro-
gress in dynamo theory. (It was, however, shown later that 
axisymmetric flows could support non-axisymmetric 
fields.) It was Elsasser13 who initiated the study of the in-
teraction between non-axisymmetric (three-dimensional) 
velocity and magnetic fields. He also suggested decom-
posing the two fields into poloidal and toroidal compo-
nents and then expanding them in spherical harmonics. 
This approach was developed further by Bullard and 
Gellman14 and is being used in dynamo models today. For 
instance, 
 

 u = ∇ × (Tr) + ∇ × ∇ × (Pr); (1) 
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where T and P are the toroidal and poloidal components 
of u and Ym

l  is a normalized spherical harmonic function. 
 Bullard and Gellman outlined a cyclic process by 
which a poloidal magnetic field can regenerate itself (see 
pages 259–260 of their paper)14. A toroidal field is swept 
out from an existing poloidal field through differential  
rotation (Figure 1 a); and an upwelling followed by a 
twist recreates a poloidal field from a toroidal field  
(Figure 1 b). These two events came to be known as the  
ω-effect and the α-effect respectively. The concept of the 
α-effect was developed further by Parker15, who sug-
gested that the deformation of the toroidal field can hap-
pen in cyclones and anticyclones similar in structure to 
those found in the atmosphere. Steenbeck et al.16 provided 
a mathematical framework for the α-effect by noting  
that a small-scale, non-axisymmetric velocity u′ interacts 
with a small-scale magnetic field b′ to generate a large-
scale electromotive force ,E ′ ′= ×u b  which, in turn, is 
proportional to the mean magnetic field B0. (The constant 
of proportionality here is denoted by α.) The small-scale 
motion can be generated in the Earth’s core either by free 
convection or by buoyant blobs of light elements released 
from a mushy zone near the inner core boundary5. 
 The popularity of the α-effect inevitably led to the  
kinematic dynamo problem17–20, which addresses the 
question of whether a given flow can generate a magnetic 
field or not. The magnetic field is governed by Maxwell’s 
equations and Ohm’s law for a moving conductor21. Com-
bining these gives the magnetic induction equation, 
which determines the evolution of B: 
 

 
 

Figure 1. Schematic of the α–ω dynamo cycle1,10,14. a, An initial  
poloidal field is swept by differential rotation to give a toroidal field;  
b, Fluid motion lifts and twists a toroidal field line to produce a pol-
oidal field loop. 
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where η is the magnetic diffusivity. Magnetic field 
growth happens when convection of B, given by the first 
term on the right-hand side, exceeds magnetic diffusion, 
given by the second term. The ratio of the two terms 
gives the magnetic Reynolds number, Rm = u*L/η, where 
u* is the typical velocity and L is the lengthscale. 
 Although kinematic dynamos have been successful in 
telling us which flows can produce magnetic fields  
resembling that of the Earth, they have ignored the effect 
of the magnetic field on the velocity. To ensure the cou-
pled evolution of u and B, the induction equation (3) 
must be solved in conjunction with the momentum equa-
tion for a liquid metal. And if the flow is driven by, say, 
thermal convection, then the temperature must also be 
solved for. 
 We therefore have the additional equations, 
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where u and B also satisfy the divergence-free conditions 
 
 . .0; 0.= =u B∇ ∇  (6) 
 
The terms on the left-hand side of eq. (4) represent linear 
and nonlinear inertia (which together give the material 
derivative Du/Dt), and the Coriolis force. The forces on 
the right-hand side are, in order of appearance, the fluid 
pressure modified by centrifugal acceleration, buoyancy, 
magnetic (Lorentz) force and viscous diffusion. In the 
above equation, μ0 is the permeability of free space, 
(1/μ0)∇ × B the current density j by Ampere’s law, Ω the 
background rotation vector that points in the z-direction, 
g the local gravity pointing downward, ρ and ρ0 the local 
and far-field densities, κ the thermal diffusivity and Qs a 
uniform volumetric heat source/sink. 
 Before discussing the solutions of the MHD eqs (3)–
(6), a note on convection subject to rotation and magnetic 
field is appropriate. 

Onset of convection and the effects of rotation  
and magnetic field 

The classical problem of Rayleigh–Bénard convection 
consists of a fluid layer confined between two plates of 
infinite horizontal extent and heated from below. The dif-

ference in temperature across the layer, ΔT is related to 
the difference in density, Δρ via the Boussinesq approxi-
mation, which gives Δρ = –ρ0βΔT, where β is the volu-
metric expansion coefficient and ρ0 is the density at the 
upper boundary, where the temperature is T0. As the tem-
perature difference across the layer exceeds a critical 
value, up-and-down convective motions are set up. The 
driving force for these motions is buoyancy, which is the 
difference between the force of gravity acting on light 
and heavy fluid elements. Now, the effect of background 
rotation on this fluid layer may be understood by looking 
at the curl of the momentum conservation eq. (4) for an  
incompressible fluid incorporating the Boussinesq  
approximation: 
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where ω is the vorticity. T is the total temperature, which 
is the sum of the basic state (conductive) temperature and 
the deviation from this state. If we consider slow and 
steady motions in an inviscid fluid and assume there are 
no body forces arising either from the magnetic field or 
from temperature (or density) perturbations, then we  
immediately obtain 2Ω∂u/∂z = 0, the famous Proudman–
Taylor theorem22,23. This axial invariance of velocity is 
also known as the geostrophic state, where the Coriolis 
force 2ρ0Ω × u is in exact balance with the horizontal 
pressure gradient –∇p in eq. (4). As the flow is purely 
two-dimensional, it cannot transmit heat across the fluid 
layer. Evidently, the onset of convection can occur only if 
the Proudman–Taylor (or rotational) constraint is broken, 
which would be the case if viscous diffusion is present24. 
The smaller the viscosity, the more difficult it is to start 
convection because the buoyancy forces must be large. In 
rotating convection the flow takes the form of rolls (Taylor 
columns) aligned with the axis of rotation. Later we shall 
look at the consequences of the Proudman–Taylor theorem 
for convection in the Earth’s core. 
 We now consider the case when the above fluid layer is 
electrically conducting and permeated by a magnetic field, 
B. The Lorentz force in eq. (7) overcomes the rotational 
constraint by inducing velocity gradients via the Coriolis 
force 2Ω∂u/∂z, a process that occurs even for zero visco-
sity. The effect of the magnetic field may also be under-
stood from energy arguments. An axially varying 
azimuthal field causes axial variations in the lengthscale 
of the fluid columns perpendicular to Ω, with regions in  
a strong field being preferentially thicker than regions in 
a weak field. Any increase in lateral dimension of the col-
umns would result in reduced energy dissipation, so that 
buoyancy does not have to work so hard to maintain  
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convection9. The above role of the magnetic field in  
aiding rotating convection is in contrast to its role in non-
rotating fluids where the field tends to suppress motions by 
Ohmic dissipation25–27. In summary, rotation tends to 
suppress convection, whereas the magnetic field makes it 
easier to set up convection in a rotating fluid. 

Nonlinear convective geodynamo models 

In a geodynamo model the fundamental MHD equations 
(3)–(6) are made dimensionless and then solved numeri-
cally for a Boussinesq fluid between two concentric 
spherical surfaces that mimic the Earth’s inner core 
boundary (ICB) and the core-mantle boundary (CMB). 
The ratio of inner to outer radius, ri/r0 is usually chosen 
to be 0.35. The computational domain is shown schemati-
cally in Figure 2. The standard numerical method and 
boundary conditions have been discussed in previous  
papers9,28. We begin by looking at the dimensionless  
parameters. 

Dimensionless parameters 

The basic dimensionless groups used in dynamo models 
are the Ekman number, the Rayleigh number, the Prandtl 
number and the magnetic Prandtl number. (The magnetic 
Reynolds number, Rm = uL/η is an intrinsic parameter.) 
The Ekman number, E = ν/2ΩL2, is the ratio of the viscous 
to Coriolis forces and is ~ 10–15 for the core. However, 
some authors replace the kinematic viscosity, ν by a tur-
bulent eddy viscosity νT and propose E ~ 10–9. The 
Rayleigh number for convection can have different defi-
nitions depending on the mode of heating; for differential 
heating (Figure 2) Ra = gβΔTL3/νκ, where L is the gap-
width of the spherical shell and κ the thermal diffusivity. 
In dynamo models the classical Rayleigh number is often 
multiplied by the Ekman number to give a ‘modified’ 
Rayleigh number9, RaM = gβΔTL/2Ωκ. Estimates for Ra 
in the core vary from approximately the critical value for 
onset of convection29, Rac to several orders of magnitude 
above Rac (refs 30, 31) even if the turbulent value of the 
diffusivity κT is adopted in place of its molecular value. 
The Prandtl number, Pr is given by ν/κ and the magnetic 
Prandtl number, Pm is ν/η. The Roberts number, given 
by q = PmPr –1 = κ /η, is a popular dimensionless group in 
many models, with a molecular value of ~ 10–6 and a tur-
bulent value of order unity31. 
 Present-day numerical geodynamo models mostly  
operate in the parameter regime E  10–7, Pr ~ 1, 
q = κ /η  0.05 and Ra/Rac é 100. 

Linear theory of rapidly rotating convection 

The theory for the onset of convection under rapid rota-
tion (in the low Ekman number limit) was originated 

nearly four decades ago32,33 and developed further  
recently34,35. These analyses are linear in the sense that 
the nonlinear inertial term in the momentum equation is 
neglected. It has been shown that the critical wavenumber 
at onset of convection, mc varies as E –1/3 and the critical 
Rayleigh number, Rac varies as E –4/3. (Here E is the  
Ekman number.) As E is lowered, the critical Rayleigh 
number increases and convection takes the form of sev-
eral tall thin columns. In the limit E → 0 (zero viscosity), 
Rac goes to infinity, implying that no convection can  
occur without viscosity24. The value of Rac obtained from 
the theory of convection is generally accepted as the ref-
erence state in numerical dynamo models: The value of 
Ra/Rac tells us how strongly a dynamo is driven.  
Although the magnetic field is known to reduce the value 
of Rac (see the section ‘Onset of convection and the ef-
fects of rotation and magnetic field’, above), it is not easy 
to evaluate the true value of Rac in a nonlinear dynamo. 

Nonlinear dynamo models 

Elsasser’s idea of solving the three-dimensional dynamo 
problem had to wait until the mid-1990s, when the first 
numerical solutions for the MHD equations appeared. As 
early models had no hope of realizing Earth-like para-
meters, they used hyperdiffusion to absorb the energy in 
higher spherical harmonics (small scales)36, but this  
 
 

 
 

Figure 2. The dynamo equations are solved in a spherical shell whose 
boundaries represent the inner core boundary (ICB) of radius 1220 km 
and the core-mantle boundary (CMB) of radius 3480 km. The radii of 
the two boundaries for the Earth were determined from seismology4,93. 
The radius ratio of the fluid core 0.35 is used in geodynamo models. 
The dashed vertical lines represent the tangent cylinder (TC). In many 
models convection is driven by applying a temperature difference  
between the two boundaries. If convection inside TC takes the form of 
an off-axis plume, then an asymmetric, anticyclonic polar vortex is pro-
duced50. 
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approach led to unphysical effects such as a much reduced 
azimuthal wavenumber37. Other models used a high  
Ekman number38 or limited resolution in longitude39, both 
of which helped reduce computational effort. These 
drawbacks were overcome in subsequent studies as com-
puter speed increased. A simple convective dynamo, run-
ning from a prescribed initial state for temperature and 
magnetic field, has been adopted as the benchmark 
against which all dynamo codes can be tested for accu-
racy40. Dynamo models from the last decade have repro-
duced several Earth-like features like the dipolar magnetic 
field, secular variation and occasional field reversals. 
 Figure 3 shows snapshots of the flow and field pro-
duced in two dynamo simulations. The columnar struc-
ture of convection has origins in the Proudman–Taylor 
theorem for a rotating fluid; the number of columns  
increases with decreasing Ekman number, as predicted by 
linear theory34. At low E the magnetic field does not  
appear to thicken fluid columns, so the flow is essentially 
similar to that found in nonmagnetic convection. For 
E = 5 × 10–5 a westward drift is noted for both the velo-
city and magnetic fields, consistent with observations of 
secular variation41,42. The large-scale dipolar magnetic 
field appears to be generated in the fluid columns43,44. 
The strongly dipolar structure for E = 1.5 × 10–6 is not 
Earth-like (Figure 3 b), but a higher Rayleigh number 
might expel flux from the tangent cylinder. Models with 
 
 

 
 

Figure 3. Contour plots for the radial velocity at r = 0.8ro, where ro is 
the outer radius (left panel), and the radial magnetic field at r = ro (right 
panel). All plots show longitudes spaced 90° apart and the equator. The 
thick dashed line in the field plots is the latitude at which the tangent 
cylinder cuts the core surface (≈ 70°). Positive values are shown in red 
and negative values in blue. a, Dynamo model at E = 5 × 10–5, 
Ra/Rac ≈ 11, Pr = 1 and q = Pm = 1. b, Dynamo model at E = 1.5 × 10–6, 
Ra/Rac ≈ 50, Pr = 1 and q = Pm = 0.1. See subsection ‘Dimensionless 
parameters’ for definitions of these parameters. No-slip, isothermal and 
electrically insulating boundary conditions are used in both models. 

basal heating produce dipolar fields for a wide range of 
Ra/Rac, whereas those with uniform internal heating 
(used to mimic radioactive heat sources in the core) often 
produce non-dipolar fields as well45. 
 Some dynamo models favour the α–ω dynamo cycle 
for field regeneration46, whereas others favour an α 2 
mechanism, where the toroidal field is produced by helical 
fluid motion in convection rolls43,47 rather than by axial 
gradients in the azimuthal flow. 
 We shall now discuss how dynamo models have  
improved our understanding of core flows and magnetic 
fields. 

Thermal winds and the mode of tangent cylinder  
convection 

Temperature (density) perturbations in the Earth’s core 
give rise to fluid motion whose behaviour can be pre-
dicted by considering the curl of the momentum eq. (7) in 
spherical polar coordinates (r, θ, φ), while retaining the 
conditions of slow and steady motion and negligible  
viscosity. For nonmagnetic convection, 
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The winds or currents implied by eqs (8) and (9) are 
known as the thermal wind, studied extensively in geo-
physical fluid dynamics48. In the northern hemisphere of 
the Earth’s atmosphere, the temperature difference bet-
ween the warm equatorial air and the cold Arctic air gives 
rise to a positive ∂T/dθ, and the resulting jet stream that 
flows from west to east shortens flight times for aircraft 
travelling eastward. There is evidence from secular varia-
tion of the geomagnetic field that there are anticyclonic 
(westward) polar vortices in the core49. The origin of 
these vortices could be a thermal wind50,51 caused by the 
polar regions in the core being warmer than the equatorial 
regions. Order-of-magnitude estimates show that even 
small latitudinal temperature variations (~ 10–3 K) can 
produce the observed anticyclonic vortices via eq. (8). 
 The magnitude of the thermal wind in the Earth is 
thought to be radically affected by its self-generated 
magnetic field. To understand this we must look at con-
vection within the tangent cylinder (TC), an imaginary cyl-
inder that touches the solid inner core of radius 1220 km, 
about 0.35 times the radius of the whole fluid core (see 
Figure 2). The rapid rotation of the Earth’s core divides 
convection into two distinct regions, inside and outside 
the TC. Outside the TC convection occurs more readily 
than inside the TC because heat and composition can be 
convected outward by tall columns in which fluid motion 



SPECIAL SECTION:  
 

CURRENT SCIENCE, VOL. 99, NO. 12, 25 DECEMBER 2010 1744 

is almost independent of the axial coordinate z, in an  
approximately geostrophic balance between the Coriolis 
force and the pressure gradient. (The CMB prevents com-
plete geostrophy.) Inside the TC heat transport from the 
ICB to the CMB requires axial (z) motions that vary  
appreciably in the z-direction as both the ICB and CMB 
are impenetrable44. Numerical simulations of rotating 
convection and dynamos confirm that the Rayleigh num-
ber required for the onset of convection is much higher 
inside the TC than outside. When convection occurs in 
the TC, the flow often takes the form of a single coherent 
plume (hot spot) that extends from the inner boundary 
right up to the polar region, but offset from the rotation 
axis50,44; see Figure 2. The plume does not remain at the 
same longitude, but migrates in a rather irregular fashion, 
but generally westward. In nonmagnetic convection, 
however, the flow in the TC takes the form of tall thin 
columns whose radius is controlled by viscosity. In com-
parison with the viscous mode of convection, the mag-
netic mode produces stronger polar vortices which are 
non-axisymmetric (Figure 2). Interestingly, when nonlin-
ear inertial forces are not small in the momentum equa-
tion (see below), the polar vortices become cyclonic, 
which suggests that inertial forces must be small enough 
in the Earth’s core to make the vortices anticyclonic. 
 A couple of issues arise from the study of thermal 
winds. First, the variation of azimuthal velocity along z 
indicates not only that the flow may be anticyclonic at the 
poles, but also that it may be cyclonic near the ICB. This 
could result in a superrotation of the inner core relative 
to the mantle. There is some seismological evidence that 
the inner core is rotating faster than the mantle52–54, but 
this is not conclusive55. On the other hand, gravitational 
coupling between the inner core and the mantle could 
prevent free relative motion between the two56. Another 
issue is that the magnetic field intensity in the poles is 
weak, whereas the field is concentrated in high-latitude 
flux lobes outside the TC (see below). While this could 
mean that convection inside the TC is too weak to gener-
ate a substantial field, it is more likely that strong mag-
netic-mode convection in the form of a plume expels flux 
from the polar regions. 

How important is inertia for the Earth’s core? 

For large-scale motions in the Earth’s core, we can esti-
mate from eq. (4) that |(u ⋅ ∇)u| ≈ u 2

*/L, where L is the 
typical lengthscale of the core, which we define as the 
difference between the outer and inner core radii L = ro – 
ri ≈ 2260 km, and u* a typical velocity of core motion. A 
velocity u* ~ 3 × 10–4 is estimated from the observed 
secular variation based on the assumption that the field is 
frozen into the flow1. (Here we neglect magnetic diffu-
sion in the induction eq. (3) and invert for the flow velo-
city at the core surface.) The Rossby number, which is the 
ratio of inertial to Coriolis forces in eq. (4) is then, 

 6* 2 10 1.uRo
L

−= ≈ ×
Ω

 (10) 

 
Thus the flow in the core will be dominated by rotation 
even if the core velocities are somewhat larger than those 
observed near the CMB. It may be argued that the above  
argument underestimates the role of inertia if core con-
vection takes the form of tall thin columns, as noted in 
Figure 3. If we suppose that the columns have extent ~ L 
parallel to the rotation axis z, and a much shorter length 
L⊥ perpendicular to the axis, then the curl of eq. (4) gives 
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which gives a balance between the inertial and Coriolis 
terms when 
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in the core. Here LR is the Rhines length57. Motions on 
this scale are unlikely to be relevant to the dynamo pro-
cess as magnetic fields on this lengthscale will decay in 
less than a year, assuming a value of 2 m2 s–1 for the  
magnetic diffusivity58. Those columns that have had their 
horizontal scale enhanced by the effect of the magnetic 
field so that L⊥ p LR would be important for the geo-
dynamo. 
 Numerical dynamo models can have inertia in them 
because it is not possible to solve the dynamo at realistic 
values of the Ekman number, E and magnetic Prandtl 
number, Pm. The Rossby number may be expressed as 
Ro = EPm–1Rm. Dynamo models giving Rm ~ 100 fre-
quently use Pr = Pm = 1 and E ~ 10–4, so Ro ~ 10–2.  
Recalling that the inertial force over a column can be en-
hanced significantly, the local value of the Rossby num-
ber can be much higher. Furthermore, if a low value of 
Pm is put into a dynamo code45,59 Ro can easily be of or-
der unity. It must be emphasized that these large values 
of Ro arise only because E has to be enhanced for  
numerical stability. A low value of E does allow a low 
value of Pm without increasing the magnitude of iner-
tia58,60. (Also see the parameters for Figure 3 b.) Sreeni-
vasan and Jones58 varied the Prandtl numbers Pr and Pm 
leaving other parameters fixed. For large Pr = Pm they 
obtained a low-inertia solution for numerically accessible 
Ekman number. In this regime the dynamo is dipolar and 
the principal force balance is between the magnetic, 
Archimedean (buoyancy) and Coriolis forces, also known 
as the MAC balance. (For E ~ 10–4 viscous forces are 
small except in the boundary layers where the velocity 
gradients are appreciable.) The MAC balance was envis-
aged for the geodynamo by Taylor61 and Braginsky62. As
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Figure 4. Spherical surface plots shown on a rectangular plane with longitude on the horizontal axis and latitude on the vertical axis. a, Boundary 
condition derived from seismic tomography94. Seismic shear wave velocity at the base of the mantle is linearly related to temperature in the lower-
mantle boundary layer. Cold (blue) patches occurring at the longitudes of the Atlantic and India induce downwellings, whereas the hot (red) 
patches under Africa and the Pacific suppress convection. b, Observed field at the core surface in 1990. c, Radial magnetic field at the upper 
boundary from a geodynamo model. The maximum variation of heat flux at the upper boundary is 0.6 times its mean value. The parameters are 
E = 1.2 × 10–4, Ra/Rac = 1.5, Pr = 1 and q = 10. No-slip boundary conditions are used for the velocity. The inner boundary is electrically conduct-
ing and isothermal, whereas the outer boundary is electrically insulating. Reproduced from Willis et al.78. 
 
 

Pr = Pm is reduced, inertial forces begin to gain impor-
tance and the MAC balance is disturbed. The magnetic 
field becomes weak and less dipolar, suggesting that the 
presence of inertia is not conducive to dipolar field gen-
eration. Moreover, cyclonic polar vortices are obtained in 
inertial models, whereas it is known that the Earth’s polar 
vortices are anticyclonic. Olson and Christensen63 identi-
fied a transition in a local Rossby number (defined based 
on the characteristic lengthscale of the flow) that demar-
cates the dipolar and multipolar regimes, and argued that 
the Earth lies close to this transition. Although their  
argument can explain polarity reversals in Earth’s history, 
it requires inertia to be as large as a tenth of the Coriolis 
forces in the core. 
 Nonlinear inertia does play a role in torsional oscilla-
tions in the core, which are geostrophic motions on cylin-
ders parallel to the rotation axis. These motions exchange 
angular momentum between the inner core and mantle on 
decadal timescales, and are thought to produce millisecond 
variations in the length of day (LOD)64,65. As the Coriolis 
and pressure forces are in balance for these flows, the 
Lorentz force must come into balance with inertia. Recent 
studies have shown that a boundary-locked dynamo also 
enforces the Lorentz-inertia balance in the momentum 
equation66 (see below). 

Modelling core–mantle coupling 

Today’s geomagnetic field at the core–mantle boundary 
has four main lobes symmetrically placed north and south 
of the equator. They are centred outside the Earth’s  
tangent cylinder near 55° North and South, and are near  
regions of high seismic velocity in the adjacent mantle 
(see Figure 4 b). They have not moved much during the 
historical period of direct observation67,68 and also show 
up in the time average of palaeomagnetic data from the 
last few million years69–71. Lateral variations in the mantle 
are essential for any long-term non-axisymmetric features 

in the magnetic field: If the mantle were perfectly spheri-
cally symmetric, the core flow would be free to evolve 
relative to it, eliminating the possibility of preferred lon-
gitudes. Hide72 was the first to suggest that the lower-
mantle variations cast their signature on the morphology 
of the geomagnetic field. Cold regions in the lower man-
tle could cause preferential cooling of the core, downwel-
ling, and concentration of vertical magnetic flux at the 
core surface. This qualitative suggestion has now been 
explored in many convection and dynamo models, mostly 
by imposing a thermal boundary condition with the same 
structure as a ‘tomographic’ model of shear wave velo-
city variation in the lowermost mantle (Figure 4 a). The 
dominant pattern is a fast (cold) ring around the Pacific 
rim with slow (hot) regions beneath the Pacific and  
Africa. The largest term in a spherical harmonic expan-
sion of the tomography is Y 2

2, and many studies have 
simplified the boundary condition to this equatorially 
symmetric harmonic. 
 Early numerical simulations of core–mantle interaction 
were on nonmagnetic convection with infinite Prandtl 
number (Pr) and laterally varying temperature boundary 
conditions. At slightly supercritical Rayleigh number the 
drifting pattern of fluid rolls becomes stationary, or 
‘locked’ to the boundary, provided the lateral variation in 
boundary heating is sufficiently strong. It was suggested 
that locking occurs when the wavelength of convection 
with homogeneous boundary conditions is similar to the 
wavelength of the boundary anomalies73. Fully self-
consistent geodynamo simulations with inhomogeneous 
thermal boundary conditions have since been used to  
explore boundary effects on the frequency of field rever-
sals74, secular variation of the geomagnetic field75, the 
time-averaged magnetic field76 and core surface flows77. 
These studies generally support the idea that lower-mantle 
shear wave velocity correlates with some aspects of the 
time-averaged field, but there is little evidence of any 
simple boundary locking in any of the results, nor is there 
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any direct similarity between snapshots of the solutions 
and the present-day geomagnetic field. A dynamo solution 
in which the magnetic field was locked to the boundary 
anomalies defined by seismic tomography was obtained 
recently78,79. The solution was not stationary, but the 
characteristic four main lobes persisted for many diffu-
sion times at the same sites as the main lobes of the geo-
magnetic field (Figure 4 c). However, the parameters at 
which boundary locking was obtained were not Earth-
like: The Rayleigh number for convection had to be set to 
a low, marginally supercritical value; consequently the 
magnetic diffusivity in the model had to be kept to a tenth 
of the thermal diffusivity (q = κ /η ~ 10) to make a  
dynamo possible. To understand why a weakly convec-
tive parameter regime is crucial for locking, one must  
return to the thermal wind balance, 
 

 2 [ ],g T
z

β∂Ω = ∇ ×
∂
u r  (13) 

 
whose horizontal components were given by eqs (8) and 
(9). With boundary anomalies, the right-hand side of  
eq. (13) is made up of two parts, the temperature gradients 
produced by free convection and the temperature gradients 
originating from non-axisymmetric lateral variations at 
the boundary. Locking is obtained when the boundary-
driven variations dominate the force balance. (Also see 
Figure 5.) Equation (13) is significant in that it allows 
fluid motion of any wavenumber to be produced by a pre-
scribed thermal variation at the boundary. Previous studies 
had suggested that locking occurs when the wavenumber 
of convection is similar to the wavenumber of the boundary 
anomalies73. Clearly, no such matching of wavenumbers 
 
 

 
 

Figure 5. Radial velocity on the equatorial plane for (a) no lateral 
variation at the boundary and (b) a Y 2

2 variation in heat flux imposed at 
the upper boundary. The maximum variation of heat flux at the bound-
ary is 1.6 times its mean value. The multicellular flow structure in  
(a) gives way to a locked, m = 2 structure in (b), where the wavenum-
ber m is prescribed by the lateral variations at the boundary. The strong 
narrow downwellings are produced by the difference in absolute tem-
perature at the upper boundary. The parameters are kept fixed at 
E = 1 × 10–4, Ra/Rac = 1.5, Pr = 1 and q = 10. Positive values are in red 
and negative values are in blue. No-slip boundary conditions are used 
for the velocity, the inner boundary is electrically conducting and iso-
thermal and the outer boundary is electrically insulating. Reproduced 
from Sreenivasan66. 

is required for locking produced by eq. (13) because it 
does not rely on convection in the first place! 
 How is locking affected by a high convective Rayleigh 
number and a low Ekman number? If the free convection-
driven temperature gradients are stronger than the bound-
ary-driven gradients in eq. (13), the velocity field is  
decoupled from the boundary and free to drift azimuth-
ally. For low Ekman numbers locking looks progressively 
difficult. Since the critical Rayleigh number for onset of 
nonmagnetic convection increases with decreasing Ekman 
number (Rac ~ E –4/3), even a marginally supercritical 
convective state can generate strong thermal winds that 
swamp the boundary variations. The above arguments led 
to a new model, where a combination of bottom heating 
and a uniform heat sink made convection much weaker at 
the top than at the bottom80. As boundary anomalies were 
allowed to dominate the thermal wind balance in the  
upper regions, partial locking of the flow and magnetic 
field was obtained. This model also obviated the need for 
a small magnetic diffusivity for dynamo action. 
 Recent studies on locked dynamos66 have produced a 
few surprising results. First, the force balance is different 
from that in convection-driven dynamos. As the boundary-
driven thermal wind balance is enforced, a secondary  
balance between the Lorentz and inertial forces follows, 
yielding an equipartition (u = B) solution24. That is, the 
kinetic and magnetic energies are equal, and the magnetic 
field and velocity field are tied together to one lengthscale. 
Although the Earth’s magnetic field is not rigidly locked 
to lower-mantle variations, the above result does indicate 
that core–mantle coupling can place a constraint on the 
ratio of kinetic to magnetic energies. Secondly, lateral 
variations by themselves can, under small background 
convection, generate a magnetic field whose structure is 
fixed by the boundary wavenumber. This result suggests 
that lower-mantle variations might play a role in field 
generation. 

Modelling geomagnetic field reversals 

Geomagnetic reversals are perhaps the most interesting 
phenomena in geophysics, and perhaps the least under-
stood. Magnetic records from ancient volcanic rock and 
sediments are our main source of information on rever-
sals. The average reversal frequency in the last 20 Ma 
was about 5 every Ma, but the last reversal had occurred 
0.78 Ma ago. From about 118–83 Ma ago, a period 
known as the Cretaceous Superchron, there are no  
recorded reversals of the field81. This period seems to 
show a significantly reduced secular variation82, leading 
to speculation that the geodynamo was passing through a 
relatively stable phase. During reversals the axial dipole 
moment can decrease by a factor of 5 compared to its 
time-averaged value, and curiously, the dipole moment 
begins its decline 60–80 kyr before a reversal and recovers 
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rapidly (within a few thousand years) after the dipole 
transition83. The geomagnetic dipole moment has been 
decreasing at a rapid rate in recent history68,84, so the 
Earth might be in the early stage of a reversal85. 
 The first polarity reversal in a geodynamo model was 
obtained by Glatzmaier and Roberts86. Since then several 
strongly driven dynamos have reported spontaneous  
polarity reversals87–90, some reminiscent of palaeomagnetic 
reversals. Except for one model89, most reversing dyna-
mos have operated in a high Ekman number (E  10–4) 
regime, which has been justified on grounds of simplicity 
and suitability for long simulations91. A high Ekman num-
ber is a natural choice for studying reversals as a strong 
convective state is realized for moderate Rayleigh num-
bers. A high-E, Pm ~ 1 dynamo has a Rossby number 
several orders of magnitude higher than that in the Earth, 
although it is claimed that the Rossby number based on 
the typical lengthscale of convection may not be far from 
the Earth’s value. As the magnetic Reynolds number for 
flows of the Rhines lengthscale is only ~ 1, it is not clear 
that buoyancy will replenish vortices that are rapidly 
damped by the magnetic field. 
 Although the sequence of events during a dynamo  
reversal has been studied in several numerical models88, 
the fundamental cause of field reversals is a mystery. An 
insight into departures from dipolar symmetry, including 
reversals, could perhaps be obtained by addressing the 
question of why rapidly rotating dynamos have a prefer-
ence for dipolar solutions. We shall discuss this briefly in 
the concluding section. 

The future of geodynamo modelling 

Geodynamo models operating in vastly different parame-
ter regimes have been successful in reproducing the main 
features of the geomagnetic field, the most important  
being the large-scale dipolar structure itself. This has 
provided the impetus to explore new dynamical regimes 
which are hopefully more Earth-like than previous models. 
The computationally difficult parameter space of low 
Ekman number and low Roberts number is explored on 
the supposition that it would be a better representation of 
core convection, but dynamos in this regime have not 
produced magnetic fields that look like the Earth. A fun-
damental study of the rapidly rotating regime should 
however be welcomed. Rotation with concomitant helical 
fluid motions in columns has been thought to produce  
dipolar fields, but recent studies suggest that magnetic 
field-induced flows can explain the preference for dipolar 
fields over quadrupolar fields (Sreenivasan and Jones, 
work in progress). These studies reaffirm our faith in 
nonlinear dynamos where the back-reaction of the mag-
netic field on the flow through the Lorentz force is given 
the importance it deserves. As we see below, they might 
also offer an insight into magnetic field reversals. 

 As convection in the Earth’s core might take the form 
of tall columns parallel to the rotation axis, it makes 
sense to consider the axial component of the MAC force 
balance (see sub-section ‘How important is inertia for the 
Earth’s core?’) 
 
 2Ω∂uz/∂z + gβ ∇ × (Tr) ⋅ ẑ + ∇ × [(∇ × B) × B] ⋅ ẑ = 0. 
 (14) 
 
The point to note, however, is that the axial distribution 
of these forces is not uniform. The buoyancy force is 
strongest near the equator, where gravity acts perpendi-
cular to the rolls and the temperature gradient is greatest. 
The peak of the damping Lorentz force, on the other 
hand, depends crucially on the peak of the azimuthal 
magnetic field Bφ, which for a dipolar field is not at the 
equator (where it is zero; see Figure 6 a), but at a point  
between the equator and the upper boundary. As the driv-
ing force and the damping force peak at different loca-
tions, it is inevitable that an axial velocity gradient is 
generated to satisfy a local force balance via eq. (14). 
This effect is manifest in Figure 6 b, where the Lorentz 
force enhances the axial kinetic energy in localized 
streaks. The growth in axial velocity contributes to an  
increase in helicity (the dot product of velocity and vor-
ticity), an important quantity for dynamo action1. The 
field-induced flow is much weaker for a dynamo with a 
quadrupolar field because both damping and driving 
forces peak at the equator. We therefore have a mechanism 
giving strong preference for dipolar fields over quadru-
polar fields. For a field reversal to occur, it is perhaps 
necessary to be in a strongly convecting regime, where 
 
 

 
 

Figure 6. Azimuthally averaged meridional plots for a dynamo model 
at E = 5 × 10–5, Ra/Rac ≈ 6, Pr = 1 and q = Pm = 1. Positive values are 
shown in red and negative values in blue. a, Azimuthal magnetic field, 
Bφ. b, Axial kinetic energy density, 1

2 u2
z. No-slip, isothermal and elec-

trically insulating boundary conditions are used. This model produces a 
stable, dipolar magnetic field. 
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the buoyancy force in regions away from the equator is 
large enough to cancel the effect of the Lorentz force, so 
that the production of ∂uz/∂z in eq. (14) is inhibited. This 
mechanism of breakdown of dipolar symmetry must be 
tested in future dynamo models. 
 Dynamo models are a powerful tool for testing various 
other hypotheses for the Earth’s core. For example, the 
possibility of driving a dynamo at least in part by lateral 
variations in the lower mantle suggests that the Rayleigh 
number for convection need not be high. A related issue 
is whether convection occurs everywhere in the core. We 
know from simulations that polarity reversals are realiz-
able only in strongly driven dynamos. On the other hand, 
persistent core–mantle coupling through the boundary-
driven thermal wind can only be obtained when convec-
tion is small. These two extreme regimes could coexist in 
a stably stratified model where convection is strong at 
depth but boundary anomalies control fluid motion in the 
upper regions66,80, a scenario consistent with independent 
arguments based on compositional buoyancy92. It is a 
matter of concern that many models might be using  
unphysical basic state buoyancy profiles, prescribing ei-
ther uniform heat flux throughout the core, or even 
worse, heat flux that increases from the ICB to the CMB. 
 Geodynamo models will be called upon in future to  
alleviate the deficiencies in our understanding of secular 
variation, field reversals, torsional oscillations and lower-
mantle effects. Our understanding of the Earth’s dynamo 
is far from complete, but with improved geophysical data 
from satellite missions and insights from laboratory  
experiments we can hope that newer models will emerge 
to provide useful comparisons with the observed geo-
magnetic field. 
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