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Evolution of a vortex in a magnetic field
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Abstract – The evolution of a single vortex in an electrically-conducting liquid, subject to a uniform magnetic field acting parallel to the axis of the
vortex, is investigated by an order-of-magnitude analysis and a numerical model. The non-linear phase of decay, wherein the Lorentz and the inertial
forces are of the same order of magnitude, is studied in detail. As the kinetic energy decays primarily due to Joule dissipation, the vortex evolves in
such a way that the component of angular momentum parallel to the direction of the magnetic field is conserved. If the true interaction parameter,Nt ,
which denotes the actual ratio of the Lorentz to the inertial forces, is assumed to be a constant of order unity in the non-linear regime, the evolution of
the vortex can be fully described. The above assumption is proven to be correct not only from the values ofNt obtained in the numerical simulation, but
also from the good agreement between the theoretical and numerically-obtained energy decay laws for the non-linear phase, at finite time. In addition,
the true interaction parameter proves to be useful in estimating the minimum magnetic field strength required for stable evolution of a swirling vortex.
 2000 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

The tendency of flow structures in an electrically conducting fluid, such as a liquid metal, to elongate in the
direction of an applied magnetic field has been established from several experiments (Votsish and Kolesnikov
[1] and Alemany et al. [2]). The experiments led to the conclusion that correlations are stronger in the direction
parallel to the external field. When a magnetic field acts on a three-dimensional velocity field, the velocity
gradient in the direction of the magnetic field is reduced by the Lorentz forces, so that the velocity becomes
almost independent of the coordinate parallel to the field. Whether a fluid structure becomes two-dimensional
or not depends on the presence of solid boundaries transverse to the magnetic field (see Sommeria and Moreau
[3]). It is also clear from experiments that the destruction of kinetic energy in the presence of a magnetic field
is accelerated by Joule dissipation.

The initial phase of decay of vortices under a strong magnetic field is characterized by dominant Joule
dissipation. This ‘linear’ regime, where inertial effects are negligible, has been studied theoretically in the
literature (Moffatt [4], Davidson [5]). In this paper, we study the magnetic damping of an isolated vortex in the
subsequent non-linear phase.

An overview of the previous studies on magnetic damping is given in section 2. In these studies and in the
present work, the ratio of the Lorentz to the inertial forces, as quantified by the interaction parameter,N , is
initially much greater than unity. The ratio of convection to magnetic diffusion, represented by the magnetic
Reynolds number,Rm, is much lesser than one. In section 3, an order-of-magnitude analysis of the evolution
of an isolated vortex aligned with the external magnetic field is presented. We first consider the principle of
conservation of angular momentum as applied to a growing vortex. Then, the ratio of the actual magnitudes
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of the Lorentz to the inertial forces, referred to as the ‘true’ interaction parameter,Nt , is studied. Finally, the
global kinetic energy equation for the vortex is derived. In the light of earlier experimental spectral studies on
magnetically-damped turbulent flows, it is shown that, unlike in conventional turbulence, viscous dissipation
cannot contribute significantly to the decay of kinetic energy, and Joule dissipation alone plays the dominant
role. The solution of the three governing equations, namely, the angular momentum equation, the energy
equation and the law of variation of the true interaction parameter, describes the non-linear vortex evolution.
Section 4 is devoted to the numerical investigation of the damping of an axisymmetric vortex that is parallel
to the magnetic field. A range of initial interaction parameters are considered, to visualize the effect of the
field strength on the evolution pattern. The variation of the true interaction parameter is studied to identify the
situation where the inertial and Lorentz forces balance initially. In the concluding section, we comment on the
agreement of the numerical results with the ideas developed in 3.

2. Previous studies

As mentioned earlier, the initial phase of decay of a turbulent flow field in a uniform magnetic field has been
treated theoretically in the literature, for the case of a high interaction parameter and a low magnetic Reynolds
number. The first condition implies that the characteristic time during which a magnetic field eliminates velocity
gradients in its direction, the Joule time (τ ), is small in comparison with the turn-over time of an eddy,t0(= l/u):

τ = ρ/σB2� l/u, (1)

whereρ andσ are the density and electrical conductivity of the fluid,l andu are the typical size and velocity of
the vortex, andB is the magnetic flux density, so that the interaction parameter,N , is large compared to unity:

N = t0/τ = σB2l/ρu� 1. (2)

The condition of low magnetic Reynolds number means that the distortion of the imposed magnetic field by
the velocity field is negligible because diffusion of the field dominates over convection.

Rm = ul/η� 1, (3)

whereη is the magnetic diffusivity.

Moffatt [4] studied the decay of the fourier transform of the linearised, inviscid equation of motion for
τ < t < N0τ . The turbulent kinetic energy decays as(t/τ)−1/2. The turbulence was described as two-
dimensional, in the sense that all quantities vary slowly in the direction parallel toB compared with their
variation perpendicular toB.

Sommeria and Moreau [3] expressed the electromagnetic force in the equation of motion in a form
resembling a uni-directional diffusion term. By including the irrotational part of thej ×B force in the pressure,
the equation of motion becomes:

Du
Dt
=−1

ρ
∇⊥p∗ + ν∇2

⊥u− σB
2

ρ
∇−2
⊥
(
∂2u
∂z2

)
, (4)

wherep∗ is the augmented pressure and∇−2 is the inverse of the Laplacian operator. Assuming that the
applied field is in thez-direction, the subscript ‘⊥’ is defined in a transverse (x, y) plane. This is valid because
the gradient in thez-direction becomes small in comparison with that in the other two directions, as a vortex
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elongates. The vorticity equation can be written in the following approximate ‘linear’ form when bothN0 and
Re are large:

∂ω

∂t
=−σB

2

ρ
∇−2
⊥
(
∂2ω

∂z2

)
. (5)

The application of the∇−2
⊥ operator is equivalent to multiplication by (−l2⊥) in Fourier space, wherel⊥ is the

length scale perpendicular to the field. The term on the right of (5) is, therefore, a pseudo-diffusion term along
B, (l2⊥/τ)∂2ω/∂z2. In short, the elongation of a vortex is a manifestation of the diffusion of vorticity along the
B-lines. The length scale parallel to the field,l‖, is expected to evolve at a rate

l‖ = l⊥(t/τ)1/2. (6)

From the above relation, Sommeria and Moreau [3] suggested that, during the typical turn-over time,l/u, of a
turbulent structure subject to a magnetic field, an anisotropic state is attained wherein

l‖/ l⊥ ∼N1/2, (7)

if l⊥N1/2 is smaller than the spacing of the walls perpendicular to the applied field.

Davidson [5] used the classical result in electromagnetism that any closed current loop situated in a uniform
magnetic field experiences a resultant magnetic torque,T, perpendicular toB. It was shown that the component
of T parallel toB, integrates to zero over a volume that is either infinite in extent or else bounded by an
electrically-insulating surface. The fluid domain may be considered to be made up of several such infinitesimal
current paths, each forming a closed loop. In short, the Lorentz force cannot affect the component of angular
momentum parallel toB, H‖. If l⊥ is assumed to be unaffected by the field during the initial phase of evolution,
the condition of constantH‖ can be coupled with the energy equation to give the laws of evolution of energy
and the parallel length scale obtained by Moffatt [4] and Sommeria and Moreau [3].

3. Evolution of an isolated vortex: the governing equations

In this section, we perform an order-of-magnitude analysis of the evolution of a vortex whose axis is parallel
to the direction of a uniform, static magnetic field, in a quiescent liquid metal. The fluid domain,V , is infinite
in extent, or the electrically-insulating boundaries are far from the initial location of the vortex, so that their
effect is not felt in the evolution process.

The laws of angular momentum conservation and energy decay are obtained. A relationship between the
length scales also needs to be derived to account for the non-linear effects.

3.1. Conservation of angular momentum

Since all current paths close within the volume, the law of conservation ofH‖ becomes applicable. The
global angular momentum is defined as

H = ρ
∫
V

x× udV. (8)

The density,ρ, being constant and uniform, the conservation ofH‖ can be written as follows:

E1/2l2⊥l
1/2
‖ =E1/2

0 l
5/2
0 = const., (9)
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whereE0 is the initial kinetic energy,l0 is the initial length scale of the vortex andE ∼ ∫
V

u2 dV . The above

equation is valid throughout the period of evolution of a vortex, and also for any value of the initial interaction
parameter, denoted byN0.

3.2. The ‘true’ interaction parameter

The laws governing the evolution of a vortex in the initial phase can be derived easily becausel⊥ is assumed
to remain unaffected by the Joule effect at largeN . But during the elongation process of a vortex, the current
density falls so that the inertial forces become significant at some stage. It would be erroneous to assume thatl⊥
is a constant during non-linear evolution. The definition of the true interaction parameter,Nt , gives additional
information about the evolution in this phase.Nt is the ratio of the actual magnitudes of the Lorentz to the
inertial forces. Estimating the rotational part of the Lorentz force,F, from equation (4), we obtain

curlF
curl[ρ(u · ∇)u] ∼

σB2l⊥
ρu

(
l⊥
l‖

)2

∼N
(
l⊥
l‖

)2

, (10)

whereN is the nominal interaction parameter. From the known estimates of the decay of kinetic energy and the
growth of the parallel length scale of a vortex during the initial linear phase of evolution,E ∼ (t/τ)−1/2 and
l‖ ∼ (t/τ)1/2, the nominal interaction parameter is given by the estimate

N ∼N0(t/τ)
1/2, (11)

and hence, the true interaction parameter is defined by

Nt =N
(
l⊥
l‖

)2

∼N0(t/τ)
−1/2. (12)

Nt decreases as a function of time, and whent ∼ N2
0τ , curl(j ×B) falls to the same order of magnitude as

curl[ρ(u · ∇)u], and the problem becomes non-linear. At the end of the so-called linear phase,

Nt =N
(
l⊥
l‖

)2

= l2⊥l
1/2
‖

τE1/2

(
l⊥
l‖

)2

∼ 1. (13)

We make the assumption thatNt remains a constant of order unity during the non-linear evolution. The above
relation is also obtained from the order-of-magnitude relationship (7) put forward by Sommeria and Moreau [3].

The duration of the initial linear phase of magnetic damping is obtained directly from the definition ofNt .
The duration of the linear phase during the damping of an isolated vortex isN2

0τ , because the global kinetic
energy,E, decays as(t/τ)−1/2. However, in the context of MHD turbulence, where the kinetic energy per unit
mass of the turbulence is given by the mean square value of the velocity,u2, a similar order-of-magnitude
calculation tells us that this phase lasts up toN

4/3
0 τ . Alemany et al. [2] had obtained the latter result for MHD

turbulence from spectral arguments.

If N0� 1, the true interaction parameter of a vortex is expected to tend asymptotically to unity regardless of
its initial value. If the inertial and Lorentz forces balance,Nt will be a constant of order one in the presence of a
steady applied magnetic field as neither Lorentz nor the inertial force gains the upper hand during the evolution
process. If, on the other hand,N0� 1, the vortex experiences only weak Joule dissipation initially. Davidson
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[5] had predicted that the angular momentum would rearrange itself into rings that propagate radially outward.
In this paper, we shall identify the value ofN0 below which such a phenomenon is likely to happen.

3.3. The energy equation

The rate of decay of the global kinetic energy,
∫
V

u2 dV can be expressed as

dE

dt
=−ε−D, (14)

whereε andD are the viscous and Joule dissipation rates per unit mass, respectively. Of these, the Joule
dissipation is expressed as

D =
∫
V

j2

ρσ
dV. (15)

From Ohm’s law in the form

curl j = σcurl(u×B)= σ (B · ∇)u, (16)

for a spatially-uniform field, the following estimates of the current, and hence the Joule dissipation can be
derived:

j ∼ σBu
(
l⊥
l‖

)
,

D∼ σB
2

ρ

(
l⊥
l‖

)2 ∫
V

u2 dV ∼ E
τ

(
l⊥
l‖

)2

. (17)

The order of magnitude of the viscous dissipation term,ε, in the energy equation (14) can also be estimated
for the non-linear decay phase. This is necessary because the vortex can be turbulent and could contain an
energy cascade, leading to significant viscous dissipation. In conventional turbulence, the energy spectrum,
E(k) in the inertial subrange varies ask−5/3. In the spectra obtained experimentally for liquid metal flows
in a magnetic field, the inertial range is found to have a slope of−3 instead of the Kolmogorov slope of
−5/3. Kolesnikov and Tsinober [6] studied the spectra of longitudinal velocity fluctuations in turbulent flow
of mercury in the wake behind a cylinder aligned parallel to a magnetic field. While a slope of−5/3 was
observed for the inertial range under weak fields, a clear slope of−3 was found for flow in a strong magnetic
field (N0 > 8). In a continuation of the above study, Votsish and Kolesnikov [1] measured the intensities of
velocity and vorticity fluctuations in turbulent flow of mercury in a rectangular channel with non-conducting
walls. The spectra of energy and enstrophy presented slopes of−3 and−1 respectively. Alemany et al. [2]
investigated experimentally the case when the initial interaction parameter took low (∼ 0.1) as well as moderate
(∼ 1) values. Their configuration consisted of a grid moving through a vertical column of mercury subjected to
an axial, homogeneous DC magnetic field. They observed an increase in the integral length scale parallel toB.
The experiments were quite different from those performed earlier, because the measurements were free from
the influence of the boundaries. The one-dimensional spectrum obtained based on the longitudinal velocity
correlation has a well-definedk−3

‖ range. Thek−3 spectrum was explained in terms of an equilibrium between
the Joule dissipation and the energy transport from the energy-containing zone to the dissipation zone in Fourier
space. In a later study conducted in Beer Sheva, Sukoriansky et al. [7] obtained experimental spectra that clearly
displayed a slope of−3 in the high wave number range.
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If k0 is the wave number corresponding to the large (energy-containing) scales, the large wavenumber spectral
kinetic energy density in MHD can thus be written as

E(k)=E(k0)

(
k

k0

)−3

, (18)

and the spectral Reynolds number,Re(k), is given by

Re(k)= u

νk
= [E(k0)]1/2

ν

k
3/2
0

k2
, (19)

whereu ∼ [kE(k)]1/2. If we impose the condition that the Reynolds number corresponding to the smallest
scales,Re(kmax) is of order unity, then

kmax

k0
∼ [Re(k0)

]1/2
. (20)

The kinetic energy,E, and the viscous dissipation rate,ε can be approximated by (see Hinze [8])

E≈
kmax∫
k0

E(k)dk ∼ k0E(k0),

ε≈ 2ν

kmax∫
k0

k2E(k)dk ∼ νk3
0E(k0) lnRe(k0)∼Eνk2

0 lnRe(k0). (21)

If a k−5/3 spectrum had been chosen, then the viscous dissipation would have been estimated by the following
expressions:

Eνk2
0Re(k0)∼ u3/ l0. (22)

Now, the Joule dissipation,D, (given by equation (17), but withE ∼ u2) is also of orderu3/ l0 if we take into
account the condition laid down by the relation (13). Therefore, the first expression in (22) becomes an apt
estimate forD. Hence, the ratio of viscous to Joule dissipation rate in MHD turbulence is given by

ε

D
∼ ln[Re(k0)]

Re(k0)
. (23)

At high Reynolds numbers,ε/D is very small, implying that viscous damping is negligible in comparison with
ohmic damping even in the turbulent regime, and relation (17) is a sound estimate for the energy decay rate
throughout the evolution process.

3.4. Decay of kinetic energy and growth of anisotropy

If the inertial and Lorentz forces acting on a vortex are approximately of the same magnitude, it will evolve in
such a way that the true interaction parameter is a constant of order one throughout the decay process (until the
growth of the vortex is influenced by the presence of solid boundaries). The equations governing the evolution
of the vortex have been developed in the previous sections. They are the equation of conservation of angular
momentum, the energy decay equation and the condition of the true interaction parameter being of order unity.
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E1/2l2⊥l
1/2
‖ = const., (24)

dE

dt
∼−E

τ

(
l⊥
l‖

)2

, (25)

Nt = l2⊥l
1/2
‖

τE1/2

(
l⊥
l‖

)2

∼ 1. (26)

From the above equations, the following laws for the decay of kinetic energy and the evolution of the length
scales can be derived for the non-linear phase (t > N2

0τ ):

E

E0
∼
[
1+ 1

N0
(t/τ)

]−1

, (27)

l‖
l0
∼N2/5

0

[
1+ 1

N0
(t/τ)

]3/5

, (28)

l⊥
l0
∼N−1/10

0

[
1+ 1

N0
(t/τ)

]1/10

. (29)

Whent ∼N2
0τ , the initial conditions that correspond to the end of the linear phase are recovered:

E/E0∼ 1/N0, l‖/ l0∼N0, l⊥ ≈ l0. (30)

Figure 1. Overall evolution of kinetic energy and length scales of a single vortex, at largeN0, in logarithmic scales.
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At large times, the following behaviour is obtained:

E ∼ (t/τ)−1, l‖/ l⊥ ∼ (t/τ)1/2. (31)

The global evolution ofE, l‖ and l⊥ at largeN0, including the linear and non-linear regimes, is shown
schematically infigure 1. The dotted curve is a typical representation of the decay of kinetic energy of the
vortex.

4. Numerical simulation of the evolution of an aligned vortex

The case of a vortex whose axis is aligned with the direction of the magnetic field,B is considered
numerically in this section. Suppose we have a localized region of swirl in an otherwise quiescent liquid
metal. We assume the flow structure to be axisymmetric, whereby the velocity field is independent ofθ in
the cylindrical co-ordinate system (r, θ, z). This swirling vortex is situated in a magnetic field pointing in the
z-direction.

4.1. Governing equations

For aθ -independent velocity field, the full Navier–Stokes equations in cylindrical polar co-ordinates with
the Lorentz force terms in them are

∂0

∂t
+ (up · ∇)0=−1

τ
∇−2
∗
(
∂20

∂z2

)
+ ν∇2

∗0, (32)

∂ur

∂t
+ (up · ∇)ur =−1

ρ

∂p

∂r
+ 1

r3
02− ur

τ
+ ν

(
∇2ur − ur

r2

)
, (33)

∂uz

∂t
+ (up · ∇)uz=−1

ρ

∂p

∂z
+ ν∇2uz, (34)

1

r

∂0

∂r
+ ∂uz
∂z
= 0, (35)

where0 is the local angular momentum,ruθ andup = (ur, uz). The operator∇2∗ is given by

∇2
∗f = r

∂

∂r

(
1

r

∂f

∂r

)
+ ∂

2f

∂z2
. (36)

∇−2∗ is the inverse of the above operator, equivalent to an integration process in the (r, z) plane. The Lorentz
terms on the right hand sides of equations (32) and (33) are obtained by considering the interaction ofuθ and
up with B (see Davidson [5] for the development). We see that all electric current paths in the azimuthal plane
form closed loops. The electric current in the poloidal (r, z) plane is expressed in terms of a stream function,ξ ,
so that

jp = σB[∇ × (ξ/r)eθ], (37)

and, by virtue of equation (16),

∇2
∗ξ =−∂0/∂z. (38)
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Equations (33) and (34) can be re-written in terms of the azimuthal vorticity by evaluating their curl:

∂

∂t

(
ωθ

r

)
+ (up · ∇)ωθ

r
= 1

r4

∂

∂z
02− 1

r2τ

∂2

∂z2

[∇−2
∗ (rωθ)

]+ ν[∇2
(
ωθ

r

)
+ 2

r

∂

∂r

(
ωθ

r

)]
. (39)

The Lorentz term is expressed in the form given in equation (39) by noting

ur =−1

r

∂ψ

∂z
, uz = 1

r

∂ψ

∂r
, ∇2

∗ψ =−rωθ , (40)

whereψ is the stream function forup. The first term on the right hand side of equation (39) represents the
generation ofωθ by the axial gradient in0 (due to differential rotation of the vortex).

Pumir and Siggia [9] have studied the evolution of axisymmetric vortices with swirl. The undamped Euler
equations were solved using a finite-difference method, to show that, whenν = 0, the gradients inωθ become
infinite at finite time, resulting in a singularity. In a later work, Grauer and Sideris [10] presented computational
evidence for the occurrence of a finite-time singularity in the axisymmetric Euler equations, with two different
numerical schemes.

4.2. Numerical method

We solve equations (32) and (39) numerically to study the evolution of a parallel vortex in a magnetic field.
At time t = 0, the0-distribution is assumed to be

00(r, z)= r2e−(r
2+z2)/δ2

, (41)

whereδ is the characteristic decay length in ther andz directions. The initial velocity distribution is assumed
to be purely azimuthal, so thatωθ = 0 at t = 0. The flow field is resolved spectrally by expressing0 andψ as
Fourier–Bessel series. The transformation is

0=
M∑
m=0

N∑
n=1

0̂mncos(mπx)yJ1(δny),

ψ =
M∑
m=1

N∑
n=1

ψ̂mnsin(mπx)yJ1(δny), (42)

0̂mn = 2

J 2
0 (δn)

1∫
x=0

1∫
y=0

0(x, y)cos(mπx)J1(δny), m= 0,

= 4

J 2
0 (δn)

1∫
x=0

1∫
y=0

0(x, y)cos(mπx)J1(δny), m > 0,

ψ̂mn = 4

J 2
0 (δn)

1∫
x=0

1∫
y=0

ψ(x, y)sin(mπx)J1(δny), (43)

whereδn are the zeroes ofJ1(x) andx = z/L, y = r/R, L=R = 5δ. We imagine an isolated vortex of radius
1 cm situated at the centre of a cavity of dimension 10 cm× 10 cm. The choice of a cosine series for0 ensures
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that ∂0/∂z = 0 at z = L, so that, by equations (37) and (38), there is no flux of the poloidal current across
the boundaries. The Lorentz term in equation (32) also vanishes. This is a necessary boundary condition for
conservation of angular momentum.

Using the transformation in (42) and (43), equations (32) and (39) are written in spectral form. The Lorentz
and the viscous terms decay exponentially in spectral space. A spectral resolution of 30× 30 modes is used
in the computation. From the point of view of visualizing the effect of the field strength on the evolution of
the flow and studying the length scale and energy decay characteristics, this resolution is found to be adequate.
A fourth-order Runge–Kutta scheme with adaptive step-size control is used for time-stepping the equations.

The properties of mercury are used in all our numerical runs:ν = 1.144× 10−7, σ = 1.04× 106, ρ =
13.55× 103, all in SI units. The initial Reynolds number is 5700.

4.3. Numerical results

In all numerical runs,
∫
0 dV is found to be a robust invariant. The maximum variation observed is only

1.3% of the initial value, forN0 ≈ 0.1. This shows that the boundary conditions on the current are satisfied
throughout a run. The following quantities are calculated during each numerical run:

(1) Global kinetic energy per unit mass

E =
∫
V

(
u2
θ + u2

r + u2
z

)
dV. (44)

The azimuthal and poloidal energies are also known separately.
(2) Parallel and transverse length scales,l‖ andl⊥ . To obtain these, we define a correlation coefficient for

the0-distribution in the (r, z) plane. For instance,

c‖(l)=
∑
r,z 0(r, z)0(r, z+ l)∑

r,z[0(r, z)]2
, 0< l < L, (45)

wherel is a shift in the axial direction, so that

l‖ ∼ [1/c̈‖(0)]1/2, (46)

wherec̈‖(0) is the curvature of the curvec‖(l) at l = 0. l⊥ is estimated in a similar fashion, but by shifting
the0-matrix in the radial direction.

(3) The true interaction parameter,Nt , given by relation (10). The characteristic velocityu used in this
relation is given by

(
E/l2⊥l‖

)1/2
. The numerical values ofNt quoted in this paper are determined by the

values of the length scales obtained by the correlation method explained above.

We begin the study with interaction parameters of order unity.Figures 2and3 show the evolution of the
flow structure whenN0 is relatively large (0.8), but still of order one. One-half of the vortex, in the region
−L < z < L,0< r < R, is shown. As time progresses, the swirl motion of the vortex propagates alongz.
There are no visible non-linear effects.Figure 3(a)shows the lines of constant0 with the lines of constant
electric current stream function,ξ superposed on them. The currents that emerge from the vortex interact with
the field, creating swirl in previously static regions of the fluid. The same currents circulate back into the vortex,
creating an oppositely-signed torque in an annular region surrounding the vortex. This explains the region of
negative0 seen radially ahead of the vortex, infigures 3to 6. The depression observed in the three-dimensional
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Figure 2. Contour plots of the0-field atN0 = 0.8: (a) whent/τ = 0, 0max= 3.2× 10−4 at r = 0.2R, and0 decreases to 3.2× 10−5 at the outer
contour; (b) whent/τ = 1.0,0max= 2.5× 10−4 at r = 0.2R, 0 = 1.01× 10−5 at the outer contour.0 values are in m2s−1.

plot of the0 distribution infigure 3(b)makes this clear. WhenN0 = 0.5, the evolution is similar, in that, the
elongation of the vortex alongz is still the dominant mechanism (figure 4).

When the field strength is reduced (N0 = 0.3), there are distinct inertial effects. The base of the vortex is
indented, and the0-lines in the core of the vortex curve inwards, as seen infigure 5. From a study of the
length scales, we shall see that, while0 diffuses along theB-lines, there is also a displacement in the radial
direction. For a weaker magnetic field (N0= 0.12), the powerful inertial forces transform the vortex into a ring,
the cross-section of which is a mushroom-shaped structure, with a cleaved base (figure 6(a)) and a shell where
the maximum angular momentum gets concentrated (figure 6(b)). This region of maximum0 pushes radially
outward fromr = 0.2R at t = 0 to r = 0.4R at t = 5τ . Pumir and Siggia [9] have predicted a similar kind of
behaviour from the analogy between axisymmetric, but undamped swirling flows and buoyancy-driven flows.

Smaller blobs of positive angular momentum are seen radially ahead of the region of reverse flow, at low
interaction parameters (infigures 5and6). These can be attributed to numerical oscillations caused by the high
radial gradients in0 developing at the front end of the vortex. The presence of these oscillations, however, does
not affect our physical understanding of the behaviour of a vortex under weak magnetic fields.
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Figure 3. Continuation offigure 2: (a) contour plot of the0-field whent/τ = 3.5,0max= 1.77× 10−4 at r = 0.2R and 0 = 1.6× 10−6 at the outer
contour. A zone of negative angular momentum, with0 = −1.18× 10−6 is seen ahead of the vortex. The constantξ -lines (dotted) are superposed.
ξ =−1.48× 10−7 at the core of the vortex, and−1.46× 10−9 at the outer contour; (b) three-dimensional plot fort/τ = 8.0. 0max= 1.28× 10−4

at r = 0.2R. The region of negative0 (wherein0 = −1.04× 10−5), produced by recirculating currents can be seen as a depression.0 values are in
m2s−1 andξ in m3s−1.

Whenz > 0,ωθ > 0, and whenz < 0,ωθ < 0. In the absence of a magnetic field, this vortex dipole will move
forward radially.0 would eventually rise to a high value in the shell region so that∂0/∂r tends to infinity at the
front end. In the presence of a strong-enough magnetic field, the above phenomenon is arrested, and only the
axial diffusion of0 dominates. On the other hand, with a very weak field, the eddy turn-over time is sufficiently
smaller than the Joule time, so that the vortex is initially subject to the above mentioned centrifugal instability.
The evolution is along the same lines forN0= 0.3 andN0= 0.12. It is seen fromfigure 6that, in the presence of
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Figure 4.The state of the vortex infigure 2(a)after three Joule times, whenN0= 0.5.0max= 1.87×10−4 at the core of the vortex and0 = 9.0×10−6

at the outer contour of the vortex.0 =−8.7× 10−6 in the contour radially ahead of the vortex.0 values are in m2s−1.

Figure 5. Contour plots of the0-field atN0 = 0.3: (a) whent/τ = 3.0, 0max= 1.8× 10−4 at r ≈ 0.3R, and0 = 2.2× 10−5 at the outer contour of
the vortex.0 =−1.2× 10−5 in the contour ahead of the vortex; (b) whent/τ = 7.5, 0max= 1.3× 10−4 at r = 0.3R, 0 = 3.4× 10−6 at the outer

contour. In the region of reverse flow,0 =−1.94× 10−5. 0 values are in m2s−1.
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Figure 6. The0-field atN0 = 0.12: (a) whenτ = 1.0, 0max= 2.4× 10−4 at r ≈ 0.3R, and0 = 1.6× 10−5 at the outer contour of the vortex.
0 =−5.7× 10−6 in the contour immediately ahead of the vortex; (b) whent/τ = 5.0, 0max= 8.5× 10−5 at r = 0.4R. A high gradient in angular

momentum exists at the front end of the vortex.0 values are in m2s−1.

a very weak magnetic field, there is a also a well-defined axial diffusion of0 in addition to the radial transport.
By stretching the0-lines in its direction, the magnetic field tries to reduce the gradients in0 at the front end of
the vortex.

Figure 7shows the energy decay for different field strengths. AsN0 decreases, the decay rate becomes faster.
WhenN0= 10, the evolution is purely linear. The energy decay is found to follow the law

E

E0
= [1+ 0.9(t/τ)

]−0.5
(47)

until t ≈ 7τ . Beyond this time, the energy curves tend to go flat, showing that the current density in the core
of the flow has fallen to a value that makes Joule dissipation small. Further evolution is not of much interest
because the vortex feels the influence of the boundaries of the domain. When the parallel length scale of the
growing vortex attains the size of the cavity, the velocity field is practically independent of the coordinate
parallel toB and hence, by equation (16), the current density tends to zero. Due to the finite size of our domain,
it would not be possible to begin with a high value ofN0 and observe the transition to a state when the inertial
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Figure 7. Decay of kinetic energy at different field strengths.

Figure 8. Ratio of toroidal to poloidal energies under strong, weak and zero fields. The curve rises after a minimum, indicating thatEp is damped faster
thanEθ by the field.
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Figure 9. Variation of l‖ andl⊥ of a parallel vortex at different values ofN0.

and Lorentz forces balance. We, therefore, suitably reduce the value ofN0 in order to identify this state of
equilibrium att = 0. In view of this, we have focussed attention on interaction parameters of order unity.

Even if the viscous dissipation terms in the governing equations are dropped in the analysis, there is no visible
change in the energy decay. This indicates that the contribution of viscosity to the overall energy dissipation is
insignificant.

Figure 8 compares the ratio of the toroidal to the poloidal energies,Eθ/Ep, for different field strengths.
The time axis is normalized with respect to the eddy turn-over time.Ep = 0 initially, but the ratio falls due to
transfer of energy fromEθ toEp as indicated by the first term on the right hand side of equation (39). A strong
magnetic field arrests this transfer so that the maximum value ofEp is atleast one order of magnitude smaller
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Figure 10.Variation of the true interaction parameter,Nt , at different field strengths.

Figure 11. Comparison of the numerically-obtained energy decay with the theoretical estimate forN0 = 0.42. The coefficient of(t/τ ) is found to
be 0.4.
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thanEθ . A weaker field (N0 = 0.2) allows greater transfer of energy, so thatEp is almost of orderEθ before
Joule dissipation becomes important. For an undamped flow,Ep keeps building up at the expense ofEθ so that
the energy ratio decreases continuously.

Figure 9 gives the parallel and perpendicular length scales at different values ofN0. As N0 decreases, the
rate of growth ofl‖ also decreases, implying weaker diffusion of0 along theB-lines. WhenN0 = 0.8, l⊥ is
approximately constant, barring the small initial contraction suffered by the vortex. As the field strength is
reduced, an increase in the transverse length scale is observed. However, the increase ofl⊥ seen atN0 = 0.3
does not represent the transverse growth of the vortex, but actually reflects the growing tendency of the vortex
to form a ring that moves radially outward. This effect is more pronounced as the field becomes weaker. The
definition of l⊥ of the vortex does not hold good ifN0< 0.4.

The behaviour of the true interaction parameter,Nt is shown infigure 10. The variation ofNt is studied by
reducing the field strength gradually. ForN0> 0.4,Nt decreases and tends to an approximately constant value
around 0.1. For instance, whenN0= 0.5,Nt decreases by 20% in the time range 3τ < t < 7τ . WhenN0= 0.42,
the value ofNt is nearly invariant in the same range. The initial decrease is attributed to the contraction inl⊥
observed earlier. For a lower field strength, (N0 = 0.35), Nt increases, but gradually (by about 12%) in the
above time range. For lower values ofN0, theNt values obtained will represent the unstable situation found
earlier with the transverse length scale. This regime, where inertial forces dominate fromt = 0, leads to an
evolution of the kind seen infigures 5and6.

In short, whenN0 > 0.4, the Lorentz forces dominate initially, and the vortex will approach a state where
magnetic and inertial forces balance. IfN0 ≈ 0.4, the two forces are approximately of the same magnitude
initially. This can be verified further by looking at the energy decay curve whenN0 = 0.42 (figure 11). The
numerically-obtained energy decay is found to follow the law

E

E0
= [1+ 0.4(t/τ)

]−1
(48)

until the evolution of the vortex is influenced by the presence of the boundaries normal toB. The velocity
gradients in the direction ofB are suppressed and consequently, the Joule dissipation falls. The above result
indicates that, if the domain of evolution were infinite in extent, the global kinetic energy would decay as
(t/τ)−1 at large times (t � τ ).

5. Discussion

In the present work, the evolution of an isolated vortex whose axis is parallel to the externally-applied steady
magnetic field is investigated by an order-of-magnitude analysis as well as by a numerical model. The order-
of-magnitude analysis for the non-linear evolution of a vortex, developed in section 3, rests on three ideas: (a)
conservation of the component of the angular momentum parallel to the field, (b) conservation of energy and
(c) the principal assumption that the true interaction parameter,Nt , is a constant of order unity if the inertial
and Lorentz forces balance. The global evolution of a vortex at largeN0 comprises a linear phase in the range
τ < t < N2

0τ , wherein the energy decays as(t/τ)−1/2, and a subsequent non-linear phase wherein the energy
decays as(t/τ)−1.

With the numerical model, we have performed a quantitative characterization of the evolution of a vortex
under a moderate magnetic field. The interaction parameters considered are of order unity. This area has
not yet received attention in the literature. An initially spherical vortex undergoes different structural changes
depending on the field strength. Under a strong enough magnetic field, the dominant mechanism is diffusion
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of angular momentum along the field lines. The behaviour under a weak magnetic field (N0 < 0.4) is complex
because the centrifugal forces acting on the vortex outweigh the Lorentz forces initially. While the structure
propagates radially outward like a thermal plume, it also diffuses axially due to weak Joule dissipation.

The computational results show that the true interaction parameter can be used as a good index of the relative
magnitudes of the magnetic and inertial forces above a certain field strength. WhenN0 > 0.4, Nt is seen to
converge to a finite value (figure 10), which indicates the beginning of a non-linear phase. IfNt is invariant in a
given time range, it implies that the two forces are approximately of the same magnitude. In the present work,
this condition is met whenN0 ≈ 0.4. If N0 < 0.4, we cannot expectNt to tend asymptotically to a constant
value. An unstable radial propagation created by dominant inertial forces takes place.

The numerical results obtained forN0 = 0.42 support the order-of-magnitude investigation. First, our
assumption thatNt is a constant in the non-linear regime is proven to be correct. Second, the numerically-
obtained law of decay of kinetic energy agrees well with the analytical law, at finite time. Since the decay of the
vortex is studied in a confined region, the long-time evolution will be influenced by the presence of boundaries.
If the vortex were to evolve in an infinite domain, we can expect the energy to decay continuously as(t/τ)−1 at
large times. From the point of view of studying the evolution at larger times, it is desirable to solve the problem
in a larger domain and with a finer resolution. In such an analysis, a strong magnetic field could be imposed
and the transition from the initial linear phase to the phase whenNt is a constant could be studied.

The contribution of viscosity to the overall damping of the vortex is found to be negligible. This is because
the major contribution to the destruction of kinetic energy comes from Joule dissipation, a phenomenon that
takes place at the large scales.
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