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Azimuthal winds, convection and dynamo action
in the polar regions of planetary cores
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We investigate azimuthal winds in planetary cores using a thermal convection-driven dynamo.
When inertial forces are not negligible in the equation of motion, the inertially driven thermal
winds are cyclonic. When the Lorentz forces are strong enough, we find anticyclonic thermal
winds as observed in the Earth’s polar region from secular variation data. Under strong
thermal convection, the azimuthal flow is created by the magnetic mode with one or more
coherent, strong upwellings inside the tangent cylinder (TC), offset from the polar axis.
We also find that, as the convection in the TC becomes stronger, these vortex plumes shrink
in size, consistent with the convection being controlled by the magnetic field. In addition,
strong upwellings in the TC could expel magnetic field in its path, creating regions of weak
or even reverse flux patches. These patches drift westward, but at a significantly slower angular
speed than the rotation about the vortex itself. Calculations with electrically conducting and
stress-free boundaries reveal that the mechanism of generation of polar thermal winds is
fairly independent of the boundary conditions imposed, provided the Rayleigh number is
high enough to excite the magnetic mode.
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1. Introduction

The rapid rotation of the Earth’s core divides convection naturally into two distinct
regions, inside and outside the tangent cylinder (TC). The TC is an imaginary cylinder
which touches the solid inner core and has radius 1220 km, about 0.35 times the radius
of the whole fluid core. The TC cuts the core-mantle boundary (CMB) at approximately
latitude 70°. Outside the TC the convection occurs much more readily than inside
the TC, because the heat and composition there can be convected outward by rolls in
which fluid motion is almost independent of the co-ordinate parallel to the rotation
axis z, in a mainly geostrophic balance of Coriolis and pressure forces, though the slop-
ing CMB prevents complete geostrophy. Inside the TC, in the polar regions, the heat
and composition flux have a substantial component in the z-direction, so the motion
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cannot be independent of z. The buoyancy force has to break the Proudman-Taylor
constraint directly, and so the local critical Rayleigh number (Busse 1970) is typically
10 times larger inside the TC than outside it. When non-magnetic convection inside
the TC does onset, it has the structure of tall thin columns (Chandrasekhar 1961) so
that the bulk viscosity can also help overcome the Proudman-Taylor constraint.
The preferred mode of convection inside the tangent cylinder will be rising and falling
plumes with z-vorticity of opposite sign at the top and bottom of each plume. This is a
different structure from the rolls outside the tangent cylinder which have fairly
constant z-vorticity in each roll, but with z-velocity changing sign as the roll crosses
the equatorial plane.

Because convection inside the TC is much more constrained by the Proudman—
Taylor theorem, a magnetic field can have a much stronger effect in breaking that con-
straint. Outside the TC, the main dynamical effect of the magnetic field is to thicken the
convection rolls (Jones et al. 2003) and to enhance the flow up and down the rolls
(Kageyama and Sato 1997). Inside the tangent cylinder, convection in a rotating mag-
netic layer onsets either as narrow viscous columns or large-scale magnetic modes that
will fill a large fraction of the entire polar region (Chandrasekhar 1961). The Rayleigh
number in the core is large enough to ensure that convection is occurring in the polar
regions, but it is not so clear whether the form of the convection is small scale (Aurnou
et al. 2003) or large scale, possibly controlled by the magnetic field (Sreenivasan and
Jones 2005). In either case, an azimuthal, or zonal, flow is to be expected. In this article,
we use dynamo models to investigate the type of zonal flow associated with the different
types of convection. Aurnou et al. (2003) considered non-magnetic laboratory convec-
tion, and found that although it was in the form of small-scale plumes, it nevertheless
drives a substantial anticyclonic zonal flow in the polar regions.

The secular variation of the Earth’s magnetic field can be used to evaluate the flow
just below the CMB provided some additional hypotheses are added (e.g. Bloxham
and Jackson 1991). Although the Oersted and Magsat satellites give accurate informa-
tion, unfortunately data about the field itself as well as its time-derivative are needed to
calculate the core velocities (Eymin and Hulot 2005) and these are uncertain due to lack
of knowledge of the crustal components of the geomagnetic field. Nevertheless, all
published analyses suggest that there are anticyclonic polar vortices (Olson and
Aurnou 1999, Hulot et al. 2002). Olson and Aurnou (1999) found a zonal flow with
an angular speed of around 0.25° yr~".

Since inertial effects are believed not to be important in the slow large-scale compo-
nents of core flow (Jones 2000, Aubert 2005, Sreenivasan and Jones 2006), the polar
azimuthal flow is likely to be a thermal wind ug, given by

g _ g7
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if the magnetic wind contribution from the Lorentz force is small. Here €2 is the angular
velocity of rotation, g is the acceleration due to gravity and « is the thermal expansion
coefficient, 6 is the colatitude in spherical polar coordinates, and z is the coordinate
parallel to the rotation axis. 7" is the temperature fluctuation, i.e. the departure
from the adiabatic value. Here a7’ = §p is the density anomaly due to temperature.
In the core there will also be a contribution from compositional convection,
but here we treat the two effects together. Braginsky and Roberts (1995)
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and Starchenko and Jones (2002) noted that the density anomaly could be estimated in
terms of the heat flux, F, (which has units Wm™2)

F~ pc,u, T'. )

As we shall see, the zonal flow uy is typically the same order of magnitude as the radial
convective velocity u, (see also Aubert 2005), so combining (1) and (2) gives the zonal
flow

d( gaF \"
" §<2Qpc,,) ’ )

where d is the distance from the inner core boundary (ICB) to the CMB, and R is the
length scale in the 6-direction, which Aurnou et al. (2003) set at R ~ d/2. This estimate
of the typical core velocity gives similar values to the secular variation estimates;
see also Aurnou et al. (2003).

There are a number of reasons why the thermal wind might be expected to give rise to
anticyclonic flow. If the inner core is gravitationally locked to the mantle (Buffett and
Glatzmaier 2000), the assumption we make here, the azimuthal flow is zero near the
ICB. If the fluid inside the TC is warmer (less dense) than that outside the TC, then
0T’/90 < 0 and so uy becomes more negative as we go outward from the ICB in the
northern hemisphere, and negative uy corresponds to anticyclonic flow. Why should
the fluid be less dense inside the TC? Aurnou et al. (2003) point out that the flux of com-
positionally light material and latent heat is released from the ICB inside the TC. If it
has difficulty penetrating outside the TC, a build-up of light material inside the polar
regions may occur. Another possibility is that the magnetic field makes the convection
take the form of a wide plume (Sreenivasan and Jones 2005). Then the fluid inside the
rising plume is systematically warmer than the cold descending fluid outside the plume.
The Coriolis force then acts to turn the warm rising plume into an anticyclonic vortex.
As we see below, it is this second mechanism that dominates most of our models, as the
magnetic field usually creates one large dominant plume inside the TC.

In the Earth’s atmosphere, the polar regions are of course colder than average due to
inhomogeneous solar heating, so the atmospheric polar vortices are cyclonic rather than
anticyclonic.

2. Governing equations and parameters

In our dynamo model, a Boussinesq fluid with finite electrical conductivity is confined
between two concentric, co-rotating spherical surfaces that correspond to the ICB and
the CMB. The radius ratio is fixed at 0.35 corresponding to the Earth’s ICB to CMB
ratio. The superadiabatic temperatures of the two boundaries are maintained at a con-
stant difference AT, driving buoyant convection. Most of the runs are done with no-slip
boundary conditions on the ICB and CMB, and with electrically insulating boundary
conditions, i.e. no currents in the mantle or the inner core. Some runs were done
using stress-free boundary conditions at both ICB and CMB, and a few runs were
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done with a finitely conducting inner core. The time-dependent MHD equations for the
velocity u, the magnetic field B and the temperature 7 are

EBn‘l(%—i- (u.V)u) 1 2ixu=—Vp+ Rari T+(VxB)xB+EV, (4

B

E:Vx(uxB)—i—VzB, ®)
aT
E+(u-V)T:HnPr“ V2T, (6)
V.u=0, V-B=0. (7,8)

The dimensionless groups in the above equations are the Ekman number, E = v/Qd,
the Prandtl number Pr=v/k, the modified Rayleigh number Ra = gaATd/n<2
and the magnetic Prandtl number, Pm = v/n. The gap-width between the shells is d,
v is the kinematic viscosity, « is the thermal diffusivity and 7 is the magnetic diffusivity.
The unit of length is d = 2.26 x 10°m for the Earth, of time is d?/n = 8.1 x 10* years,
assuming n = 2m?s~!, and the unit of temperature is A7. Taking in the Earth’s core
g=8ms % a=10°K™" and Q=73x1075s"" (Anufriev er al. 2005), then
AT =10"3K gives a Rayleigh number of 1240. As always in numerical dynamo
models, the values of v and « are assumed to be enhanced above their true values to
ensure numerical stability. Here we assume Pr = Pm, which means that the turbulent
« is also 2m?s~!. Assuming p = 10*kgm ™ and ¢, = 860 kg3 K~', the conducted
heat flux at the CMB is then 0.35 pc,kAT/d = 2.7 x 1073 W m >, leading to a total con-
ducted heat flux at the CMB of 0.4 TW. Our runs have Ra in the range 500—1750, i.e. up
to about 20 times critical. Since the Nusselt number is typically in the range 3-5 for
these Rayleigh numbers, our total convective heat flux is in the range 0.3-2 TW’
a geophysically reasonable value. Magnetic field is measured in units of (pQ2un)?,
p being the density and p the permeability of free space. With our standard Earth-
like parameters, the unit of magnetic field is 1.4 x 1073 T, while a typical value of the
observed B, at the CMB is 5 x 10~*T. The Ekman number, E is fixed at 10~ in all
runs. The code gives close agreement with the dynamo benchmark (Christensen et al.
2001) and other dynamo simulations (for example, Christensen et al. 1999).

3. Results

3.1. The effect of inertia on the polar azimuthal flow

We first study the role played by inertia on the formation of zonal flow inside the TC.
If the Rayleigh number is kept constant and the Prandtl numbers Pr and Pm are
decreased but kept equal to each other, then the viscosity in the model is reduced
and the fluid Reynolds number increases, so the inertial forces become important;
see Sreenivasan and Jones (2006) for a full discussion. It is then possible for the
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Figure 1. Contour plots of the axial vorticity, w., in the z=1.48 plane, with arrows for the flow perpendi-
cular to z superposed for two cases: (a) Pr = Pm = 0.2 and (b) Pr = Pm = 5. The Rayleigh number, Ra is
fixed at 750 in both cases. The minimum and maximum dimensionless values of the quantities plotted are
as follows: (a) [—5779.3,6621.8], with maximum velocity perpendicular to z (longest arrow) 334.8 and
(b) [—7615.5,2149.3] with maximum velocity perpendicular to z 212.46. Positive values appear in solid
lines and negative values in dashed lines. Twofold symmetry in longitude is imposed in these computations.

1877

Figure 2. Meridional contours of the azimuthally averaged thermal wind, u, in a sector magnifying
the tangent cylinder region, shown highlighted in (a). The meridional flow arrows are superposed. The
parameters are (b) Pr = Pm = 0.2 and (c) Pr = Pm = 5. In both runs, Ra =750. The minimum and maximum
values in the plots are (b) [—156.7, 128.1], with maximum meridional velocity 200.7 and (c) [-206.9, 79.7], with
maximum meridional velocity 266.5. Negative values of u, are shown in dashed lines. Note the change in the
direction of u,.

Reynolds stresses and the meridional circulation to drive a zonal flow which can
dominate the thermal wind term. In figure 1(a), we show contour plots in a horizontal
section at an elevation z = 1.48 above the equatorial plane and lying in the polar region.
Note that the plane z=1.44 contains the circle where the tangent cylinder cuts the
CMB. We find that the axial vorticity, w., near the polar axis has a positive sign at
Pr = Pm = 0.2. There is a radial influx of fluid into this zone and from figure 2(b),
we see that there is a corresponding downwelling in this region. The meridional plots
in figure 2 are azimuthally averaged, with the TC region shown magnified in a sector
that makes an angle 18° to the polar axis. Figure 2(a) shows the geometry with the
sector highlighted. The azimuthally averaged zonal flow in figure 2(b) is cyclonic (east-
ward). As Pr= Pm is increased to 5, w. becomes negative in a region of upwelling as
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seen in figure 1(b), still preserving the negative helicity. The zonal flow is now anticy-
clonic (see figure 2c), as indicated by the secular variation observations, and is a thermal
wind driven by the horizontal temperature gradient as in equation (1). We also note
from figure 2(c) that the upwelling column extends from the ICB right into the polar
region, drawing fluid inward at its base and expelling fluid radially outward at the
top. Hence, there is a weak prograde azimuthal flow near the ICB, the magnitude of
which is about one-third of the strong anticyclonic flow at the pole (a weak prograde
flow at the ICB is also seen in other simulations; see for example, Glatzmaier and
Roberts 1995). We have found that an anticyclonic polar vortex can be realized only
for Pr > 0.5, showing that this is a markedly low-inertia phenomenon, characterized
by a magnetic-buoyancy-Coriolis force (MAC) balance. Cyclonic polar vortices are
generated when the inertial terms are significant. The magnetic field in such cases
is very weak and so the Lorentz forces do not enter the force balance substantially.
What ensues is a balance between the buoyancy, inertial and Coriolis forces
(Sreenivasan and Jones 2006).

3.2. The structure of magnetoconvection in the polar regions

We now focus on low-inertia results at Pr = Pm = 5, to understand how the behaviour
of these anticyclonic vortices is affected by core convection and the generation of
magnetic fields. We have not imposed azimuthal symmetry in the calculations reported
henceforth; in other words all azimuthal m-modes up to the truncation value are
included in the spherical harmonic expansion. The main noticeable difference between
these simulations and those with imposed azimuthal symmetry is that the upwelling that
extends from the ICB up to the pole takes place through one or more localized hot spots
that are offset from the rotation axis (see figure 3 for one horizontal section of this hot
spot, and also Sreenivasan and Jones 2005). The centre of the hot spot lies on a line
closely parallel to the rotation axis. If only even parity azimuthal m-modes are included
in the simulation (see for example, Christensen ef al. 1999), the upwelling is forced to lie
exactly over the pole as in figures 1 and 2, and the naturally occurring offset found here
is missed. This off-axis plume can change its longitudinal position with time, the direc-
tion of drift being generally westward (see also Sreenivasan and Jones 2005).
At Ra=1525, figure 3(a) shows a snapshot of the temperature perturbation 77 in
which we see three significant hot spots that correspond to the three upwellings in
figure 4(a). As the Rayleigh number is increased to 750, there is only one dominant
upwelling (see figures 3b and 4b), but the local temperature and axial (z) velocity are
higher in that single plume. Also, the size of the plume is larger than that of the
individual plumes at Ra=1525. The largest single plume occurs near Ra=1100,
(figure 3c). However, as the convective driving is made stronger (Ra=1450; see
figure 3d), although the strength of the upwelling is greater, its kernel appears to
shrink in size. We shall return to this interesting observation in section 4.

We have noted that, at high Ra, the flow within the TC is generally dominated by one
or more upwelling plumes. The off-centre plume creating the anticyclonic vorticity
is clearly a convective phenomenon as can be seen from the very strong correlation
between the temperature and the axial velocity fields shown in figures 3(a), 4(a) and
3(b), 4(b). In figure 4(c), the z-velocity with the magnetic field switched off is given.
The Rayleigh number is 750, the same as in figure 4(b), but the convection has an
entirely different pattern. The single dominant plume is replaced by a much larger
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Figure 3. Plots of the temperature perturbation, 7’ at a section z=1.46 above and parallel to the
equatorial plane. The operating parameters are (a) Ra=525, (b) Ra=750, (c) Ra=1100 and
(d) Ra=1450. In all runs, Pr = Pm = 5. The outer radius of this section in dimensionless units is 0.485
(the tangent cylinder radius is 0.538). No longitudinal symmetry is imposed. The minimum and maximum
values in the four figures are as follows: (a) [—0.002,0.0192] (b) [—0.003,0.116], (c) [—0.0037,0.249] and (d)
[—0.009,0.377].

Figure 4. The section z = 1.46 above and parallel to the equatorial plane. (a), (b) and (c) give contours of the
axial velocity u. for (a) Ra =525, (b) Ra=750 and (c) Ra =750 with B = 0 imposed. The respective minimum
and maximum values for u. shown are (a) [—10.01,17.55], (b) [—24.85,41.4] and (c) [—5.56, 3.46]. Positive
values of u. are shown in solid lines and negative values in dashed lines. Pr = Pm =5 in all runs.

number of thinner plumes. Around the edge of the section we see the tops of the con-
vection columns driven by the convection outside the TC, which dominates the rather
feeble convection plumes inside. The axial velocity in the absence of the magnetic field
is about 10 times weaker than the dynamo run at Ra=750 (compare values for



326 B. Sreenivasan and C. A. Jones
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Figure 5. Meridional contour plots of 1/r(d7'/d9) with (a) pure convection in the spherical shell and
(b) dynamo action. Both runs were performed at Ra=750, Pr=Pm =5 and E = 10"*. The minimum
and maximum values in these figures are: (a) [—0.86,0.57]; (b) [—0.83,0.62]. Note the dominant
temperature gradients inside the tangent cylinder (near the polar region) in the presence of dynamo action.

figures 4b and 4c). We also note that the azimuthal wind ug for pure convection in the
spherical shell is much weaker than that in the presence of a dynamo magnetic field at
the same parameter values of Ra, Pr and E. In figure 5 we show meridional sections of
1/r(0T’/030), which drives the thermal wind by way of equation (1). Note that it is the
enhanced horizontal temperature gradient which is responsible for driving the larger
zonal flows, not the Lorentz force itself. We therefore conclude that magnetic field
has a major effect on the formation of these upwellings.

The upwelling fluid that is channelled through the hot spot is strongly correlated with
negative z-vorticity; see figure 6(a—). The flow field perpendicular to z near the plume is
complex as there are not only regions of radial outflow as one would expect in the polar
region, but also a localized region of radial inflow which one would not observe when
azimuthal symmetry is imposed. The offset of the plume produces this inflow and
thereby, the small region of prograde (eastward) azimuthal flow between the vortex
and the axis (figures 6e and 6f). The upwelling at Ra = 525 is not strong enough to pro-
duce a marked prograde patch, but in all higher-Ra runs, the offset of the plume causes
this phenomenon. As Ra is increased from 750 to 1450 (i.e. to approximately 20 times
the critical value for the onset of non-magnetic convection), the maximum velocity per-
pendicular to z increases three-fold. The stronger upwelling gives rise to a radially
inward flow that is greater than the radially outward flow. Consequently, the prograde
azimuthal flow also increases threefold (compare values for figures 6¢ and 6f). The
retrograde (anticyclonic) flow velocity is not significantly affected by the convection
for Ra > 750 (also see table 1 for the average values of uy). In short, the only effect
of increasing Ra further would be to reduce the transverse dimension of the upwelling
plume and create a stronger prograde flow region near the axis.

From the meridional plots of u, in figure 7, we again see the offset in the upwelling
and the presence of the positive (prograde) azimuthal flow closer to the axis. Since the
vortex is not axisymmetric, we have chosen a section passing through the centre of a
plume to visualize the local flow. Note that the maximum value of uy in these figures
could be 34 times the azimuthally averaged maximum values given in table 1. The
exception to this is the case with imposed twofold longitudinal symmetry (m,=2 in
table 1) where the azimuthally averaged value of the ‘centered’ vortex is approximately
equal to the local value at any section. The inclination of the vortex to the polar axis,
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Figure 6. (a), (b) and (c): Contour line plots of the axial vorticity, w. with the flow arrows perpendicular to
z superposed at the section z=1.46, for the cases (a) Ra=525, (b) Ra=750 and (c) Ra=1450. Negative
values are in dashed lines. (d), (e) and (f): Corresponding shaded contours of the azimuthal velocity, u, at
the same section, with positive values in red and negative values in blue. The minimum and maximum values
of w. are (a) [—2054.29,1037.74], with maximum velocity perpendicular to z (longest arrow) 67.24,
(b) [—6881.96, 3225.08], with maximum velocity perpendicular to z 302.4 and (c) [—16279, 15248], with max-
imum velocity perpendicular to z 908.79. The minimum and maximum values of u, are (d) [-59.9,8.19],
(e) [-239.53,200.55] and (f) [—276.69, 638.29].

Table 1. Summary of the operating parameters in the calculations with electrically insulating boundary
conditions. Here, Ra is the Rayleigh number, / is the maximum spherical harmonic degree used, m is the
azimuthal symmetry imposed (1 for no symmetry), R,, is the magnetic Reynolds number of the dynamo, g,
is the maximum ¢-averaged anticyclonic azimuthal velocity, 6, is the polar vortex inclination, B, cyp is the
time-averaged maximum CMB radial magnetic flux obtained, A,,,, is the Elsasser number based on the
maximum value of B. and A is the Elsasser number based on the value of |B| throughout the whole shell.

Figure reference Ra I mg R, g, Opy B,cmp Apax A
1(b), 2(c) 750 48 2 85  206.9 3.7° 1.0 18.4 1.91
3(a), 4(a), 6(a) and (d) 525 48 1 60 339 15.3° 0.6 092 0.8
3(b), 4(b), 5(b), 6(b) and (e), 7(a), 8(a) 750 56 1 85 71.1  11.6° 1.0 120 225
3(c), 11(a) and (d) 1100 68 1 115 58.9  10.8° 22 64.0  3.80
3(d), 7(b), 8(b), 9(a)—(c) 1450 68 1 150 504 11.5° 2.8 104.0 5.10

Opv, given in table 1 is obtained by measuring the angle made to the axis of rotation by
the peak ¢-averaged u, from a meridional section. We find that, at large values of Ra
(and the magnetic field), 6,, is about 11°, so that at the CMB it occurs around latitude
80°. The diameter of the vortex core is about 15°.

Figure 8 gives the meridional contours of the magnetic field By in the TC with arrows
giving the length of B, superposed on them. By appears to be mainly created by u twist-
ing the z-field component. B, itself appears to have come mainly from the dipole field
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(b)

Figure 7. Meridional contour plots of u, in the section that passes through the centre of the upwelling
plume. The meridional flow arrows are superposed. The sector shown has an angle 18°. The line types are as
in previous figures. The parameters are (a) Ra=750 and (b) Ra=1450. The minimum and maximum
values in these figures are (a) [—245.4,207.5], with maximum meridional velocity (longest arrow) 106.6;
(b) [-212.2,750.3], with maximum meridional velocity 360.8.

=
N\, »
S
WS,
NI 7 W 7
IS
\“\.\«“\ ///% e d
W%
7

Figure 8. Meridional contour plots of B, in the section that passes through the centre of the upwelling
plume. The arrows depicting B, are superposed. The sector shown and the parameters are similar to those
in figure 7. The minimum and maximum values in these figures are: (a) [—1.26, 1.37], with maximum B,
(longest arrow) 3.462; (b) [—2.88,3.77], with maximum B, 10.22.

generated outside the TC diffusing in. Note that B, is much stronger near the ICB than
at the CMB and this is reflected in the large value of the maximum Elsasser number,
Aax In comparison with the volumetric average value, A. In section 4, we shall
see that A, controls the size of the upwelling plumes within the tangent cylinder.
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©)

180°W

Figure 9. Shaded contour plots of (a) u, and (b) B, on the section z=1.44 above the equatorial plane, where
the tangent cylinder cuts the outer boundary of the spherical shell. In (c), contours of B, on a stereographic
projection of the polar region between latitude 60°N and the North Pole are shown. The dashed circle
gives the location of the tangent cylinder (=71°N), to which the outer radius of the section in figure (a)
and (b) correspond. The respective maximum and minimum values in the figures are (a) [—93.7,183.0],
(b) [-0.103, 1.6] and (c) [—0.02, 1.98]. The Rayleigh number, Ra = 1450.

Conversely, the wavenumber perpendicular to z of the observed polar vortex plume
could possibly be used to probe the magnetic field that exists near the inner core.

When convection is strong, there is a direct correlation between the flow and the
poloidal magnetic field within the TC. From figures 9(a) and 9(b), we find that
strong flux patches occur in downwelling regions, and weak or even oppositely
signed fields (seen as white) are produced in areas of fluid upwelling. The rising fluid
expels magnetic field in its path, thereby creating a field deficit in that region.
Conversely, sinking fluid just below the CMB is associated with stronger normal flux
patches. However, the correlation is not perfect and a stronger flow does not necessarily
result in a stronger or weaker field. The ‘whitest’ (lowest field) patch in figure 9(b) is not
in fact associated with the strongest upwelling vortex, but with a weaker upflow on the
other side of the polar axis. In figure 9(c) the contour plot of B, is shown in stereo-
graphic projection. This corresponds to the plot that can be compared with magnetic
observations. At Ra= 1450, there are some weak reversed flux patches at the CMB
associated with the upwelling regions, which are not found at lower Rayleigh numbers.
At even higher Rayleigh numbers, one could obtain perceivable reverse flux patches at
the CMB associated with the upwelling plumes, but higher Ra requires more resolution
than we could achieve numerically.

3.3. Effect of varying the boundary conditions

With an inner core whose electrical conductivity is the same as that of the fluid outer
core, the polar vortex velocity is generally higher. At Ra =750, the velocity is not sig-
nificantly greater than that with the insulating core, but at Ra=1100, the strength
increases by a factor of two. As seen in figure 10(a), there could be more than one
upwelling plume inside the TC at a given instant, but there is one dominant plume
that generates the bulk of the anticyclonic azimuthal flow in figure 10(c). From
table 2, we note that the conducting inner core generates a higher R,,, and a vortex
velocity that could be up to three times bigger than that with an insulating
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Figure 10. Top row (a), (b) and (c): Coloured contour plots for the case Ra=1100, Pr = Pm =5 with a
finitely conducting inner core at the section z=1.46. (a) is the temperature perturbation, 7", (b) the axial
velocity, u. and (c) the azimuthal velocity, u,. Positive values are in red and negative values are shown in blue.
The minimum and maximum values are (a) [—0.014,0.30], (b) [-130.12, 162.8] and (c) [-500.7, 380.5]. Middle
row (d), (e) and (f): The corresponding contour plots for the case with stress-free, electrically insulating
boundaries with the same parameters. The minimum and maximum values are (d) [—0.001,0.04],
(e) [—78.52,93.7] and (f) [—253.75,157.8]. Bottom row (g), (h) and (i): Plots for the case Ra=1750,
Pr = Pm = 10, with stress-free, electrically insulating boundaries. The minimum and maximum values are
(g) [-0.068,0.227], (h) [—88.0, 105.8] and (i) [—748.9, 595.3].

Table 2. A comparison of the operating parameters in the calculations with different boundary conditions.
No azimuthal symmetry is assumed. R-CIC: rigid, finitely conducting inner core; SF-IIC: stress-free,
electrically insulating boundaries (superscripts 1 and 2 denote runs at Pr = Pm = 5 and 10); SF-CIC:

stress-free, finitely conducting inner core.

Figure reference BC Ra R, Mppeac Tg, Opy B.cmB Apax A
10(a)—(c) R-CIC 1100 123.5 6-8 23223 15.2° 1.4 18.4 4.10
10(d)—~(f), 11(b) and (¢)  SF-IIC' 1100 141 9-11  146.93 3.0° 1.3 1.80  1.55

10(g)~(i), 11(c) and (f)  SF-IIC2 1750 219.6 09-11 850  11.3°

2 74.2 1.554
SF-CIC 1100 165 9-11  180.0 3.0° 4

220 1.97
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Figure 11. Contour plots of the radial velocity, u, on the spherical surface r = 0.8r, and the radial magnetic
field at r=r,, for E=1x 107*. The cases shown are (a) and (d) no-slip boundary conditions at ICB and
CMB, for Ra=1100, Pr = Pm =5, (b) and (e) stress-free conditions for the same parameters and (c) and
(f) stress-free conditions for Ra=1750, Pr = Pm = 10. The thick dashed circle in (d)—(f) corresponds to
latitude 71°, where the tangent cylinder cuts the spherical surface. The minimum and maximum values
are (a) [—324.6,317.9], (b) [—343.9,313.5], (c¢) [-518.1,398.0], (d) [—1.98,1.18], (e) [—0.942,1.29] and
(f) [-1.13,1.21]. Note that the columns are thinner and extend well into the tangent cylinder with stress-free
boundary conditions (also see figure 10¢). Note that the stress-free case at Ra = 1100 has a weaker field inside
the TC (latitude 70°).

inner core, though the magnetic field is not necessarily bigger. The peak ¢-averaged
zonal wind is inclined at an angle 15°.

The electrically conducting boundaries certainly affect the solution, enhancing the
zonal flow, but there is not a qualitative change in behaviour. Most of the patterns
with a conducting core can be seen with insulating boundaries at a slightly different
value of the Rayleigh number. With stress-free boundaries, the results for Ra=1100
shown in figures 10(d-f) are significantly different. There is very little convection
inside the TC; compare the maximum temperature perturbation values in figure 10(d)
and figure 3(c), for example. The strong magnetically controlled vortex is not seen.
On the other hand, we find a somewhat larger number of tall, thin convective rolls cor-
responding to m =9-11 which extend well into the polar region (see figure 11b and com-
pare with the no-slip case figure 11a). However, even though there is very little
convection in the polar region (this was also found by Christensen ez al. 1999), there
is nevertheless a substantial anticyclonic vortex. It is more spread out (and axisym-
metric) than the magnetically controlled plume vortices, but its total strength can be
similar. This vortex probably originates from the polar region being generally
warmer than the equatorial regions, perhaps due to the first mechanism (Aurnou
et al. 2003) mentioned in the introduction. The peak vortex velocity is located
quite close to the axis (at about 3° to the z-axis). For non-magnetic convection
with stress-free boundaries, the dominant wave mode is m=0 where all the zonal
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flow is concentrated and the second dominant mode is in the range m =8-13, corre-
sponding to the number of convection rolls. The polar zonal wind is also approximately
S times stronger. The role of the dynamo magnetic field is to reduce the magnitude of
the polar wind (through Ohmic dissipation) and to concentrate the kinetic energy into
the columnar modes.

The lack of convection in the polar regions at moderate values of Ra was considered
by Christensen ez al. (1999) to be responsible for the comparatively weak magnetic field
inside the TC in the case of stress-free boundaries. It is also possible that it is the
comparatively weak magnetic field in the polar regions that is responsible for reduced
convection! In figures 11(d) and 11(e), we show the radial magnetic field on the core
mantle boundary for no-slip and stress-free boundary conditions. In the no-slip case
there are strong flux patches just outside the TC. These diffuse inward to provide the
magnetic field that allows magnetoconvection to occur inside the TC, and hence
produce magnetically controlled vortices. Indeed, it is probably the fact that the field
is strongest just inside the TC, rather than at the poles, that is responsible for the
offset from the polar axis. The plume seeks out the location where the field is strongest.
In the stress-free case at Ra= 1100, the field is generally somewhat weaker, but it is
much weaker near the TC (table 2). In consequence, very little field diffuses inside
the TC, and convection is in the form of weak thin plumes. The question of whether
the field is weak inside the TC because the convection there is weak, or whether the
convection is weak because the field is weak, is rather a chicken and egg situation.

However, if the Rayleigh number is increased in the stress-free case, strong convec-
tion is excited within the TC. Isolated upwellings similar to the ones observed at
lower Ra with no-slip boundaries appear as in figure 10(g) and (h), which are for
Ra=1750. Although there is a big difference between stress-free and no-slip at
Ra=1100, the real effect of the stress-free boundaries is just to delay the onset of the
magnetic mode of convection to a somewhat higher critical Rayleigh number.
When the magnetic mode is established at Ra=1750, the generated polar vortex is
non-axisymmetric (compare figure 10i with 10c and 6f, for example). However, at
Pr=Pm=1 (not shown in figures), the m=0 mode is dominant in the kinetic
energy spectrum. The large-scale zonal flows being generated in the polar region and
the excursions of the magnetic field in either hemisphere are reminiscent of a strong pre-
sence of inertia in the equation of motion (see Sreenivasan and Jones 2006). For the case
Pr = Pm = 10, the one presented in this article, we find that inertia has become small
enough to restore columnar convection and the dipolar symmetry of the magnetic field;
see figures 11(c) and 11(f). Note from table 2 that even when the surface and volume-
trically averaged magnetic fields are weak, the maximum B. (or A,,,.) in the spherical
shell has increased substantially in the calculation at Ra=1750.

From the above discussion, it is clear that, provided convection is strong enough
within the tangent cylinder and inertial effects are negligible in the model, the mechan-
ism of polar vortex generation is practically unaffected by the kinematic and electrical
boundary conditions imposed.

4. A plane layer magnetoconvection model

The linear theory of convection in a horizontal plane layer (Chandrasekhar 1961), with
the rotation vertical and an imposed vertical magnetic field B., provides some insight
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despite the curvature of the boundaries in the polar regions. Writing b. for the pertur-
bation of B., j. for the z-component of the current and w. for the z-component of the
vorticity, the z-component of curl and curl® of the momentum equation, the z-compo-
nent of the induction equation and its curl, and the temperature equation give

E(D* — a*)w- 4+ 2Du. + ADj. =0, )

E(D? — &*’u. — 2Dw. + A(D* — a*)Db. — a* RaT’' =0, (10)
(D> — d*)b. + Du. =0, (11)

(D? — &)j. + Dw, = 0, (12)

(D> — )T +u. =0, (13)

where D = d/dz and « is the horizontal wavenumber. Our numerical results suggest that
stationary modes are the most relevant modes here, so time-dependence is ignored in
this simple model, and we solve the linear stability problem as an eigenvalue problem
for Ra and minimize it over ¢ (Chandrasekhar 1961). A is an input parameter for
this linear problem, but table 1 suggests appropriate values. The results are shown in
table 3. The case with stress-free, electrically insulating and constant temperature
boundaries,

Du.=u.=Dw.=j.=T =0 onz==0.5, (14)

uses the formulae given by Chandrasekhar (1961), pages 202, 203, and then converted
to our notation. Chandrasekhar noted that there are two modes of convection,
the stress-free magnetic mode (denoted by SFM) and the stress-free viscous mode
(denoted by SFV). At small E, the viscous mode always has a large wavenumber,
scaling like E~'/3, corresponding to tall thin convection columns. The magnetic mode

Table 3. Plane layer magnetoconvection results. Critical Rayleigh numbers Ra and corresponding
horizontal wavenumbers a are shown. SEM: stress-free magnetic mode; SFV: stress-free viscous mode; NSM:
no-slip magnetic mode; NSV: no-slip viscous mode. All results for constant temperature, electrically
insulating boundaries with £ = 10~*. Values for SFV and NSV with A > 2 are omitted as the critical Ra
for these modes is higher than that of the corresponding magnetic mode.

A 0.2 0.335 0.5 1 2 3.45 5 10 50 100

Ra SFM  777.9 472.4 323.1 176.5 114.9 102.6 107.7 147.2 5399  1042.0
a SFM 3.215 3.202 3.216 3.336 3.744 4.440 5.154 7.059  14.17 17.53
Ra SFV 4738 472.4 470.8 465.4 - - - - -

a SFV 35.12 34.97 34.77 34.12 - - - - - -
Ra NSM 5428 381.4 280.9 165.7 112.0 101.4 107.0 146.9 541.0 1044.7
a NSM 4.128 3.702 3.556 3.542 3.909 4.615 5.359 7.349  14.62 17.82
Ra NSV 3839 380.2 375.5 361.4 - - - -

a NSV 30.99 30.63 30.16 28.45 - - - - - -
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has a ~ w at small A, but as A increases « also increases, again leading to tall thin
magnetically controlled columns. At small A, the critical Rayleigh number is least for
viscous modes, so they dominate, but at larger A the magnetic modes have lower critical
Rayleigh number so they take over. At E = 10~* the critical value of A at which the
changeover occurs is A = 0.335, a rather small value. The corresponding results
for no-slip boundary conditions,

DuZ:u::a)Z:jZ:T/:O on z = £0.5, (15)

are listed in table 3 as NSM and NSV for the two types of mode. These were calculated
using a Chebyshev polynomial eigensolver; see Roberts and Jones (2000) for details.
Changing the boundary conditions does not affect the results much; the main difference
is that the viscous modes have slightly higher critical Rayleigh number in the stress-free
case (see also Zhang and Jones 1993). This small difference (which reduces in percentage
terms as E is reduced) cannot explain why the convection inside the tangent cylinder is
so much stronger in the no-slip case than the stress-free case. The difference must be due
to the much larger magnetic field occurring in the no-slip case, which, as table 3 shows,
dramatically decreases the critical Rayleigh number.

When comparing these table 3 results with our magnetically controlled plumes,
we can view the plume as a structure which is approximately axisymmetric about its
centre. The radial temperature perturbation dependence is then 77 ~ Jy(ap), where J,
is the zero-order Bessel function and p is the distance from the plume axis. The first
zero of Jy is ap = 2.405, so that taking A = 100 from table 1 (see the tabulated value
of Ama) as an appropriate value at Ra = 1450, from table 3 we get ¢ = 17.82 and
so p=0.13. This is a measure of the expected plume radius. If we now compare
with figure 3(d), remembering that the dimensionless radius of this section is
V/1.538%2 — 1.462 = 0.485, we see that the dimensionless plume radius is approximately
one-third the section radius giving p ~ 0.16, remarkably close to the predicted 0.13,
so this simple model does a surprisingly good job of predicting the plume structure.
The plume in figure 3(c) is slightly thicker than that in figure 3(d), but this is what
we expect, because the value of A is less than 100 at Ra=1100. Again, the simple
theory predicts the plume structure correctly. The form of u., us, w. and the horizontal
parts of B shown in figures 4, 6, 7 and 8 can also be predicted reasonably well from the
linear theory. Since there is also an azimuthal magnetic field component diffusing in
from the field generated outside the TC, it might be expected that this would alter
the results significantly. However, from figure 5 of Roberts and Jones (2000), which
considers the equivalent linear problem with the field horizontal rather than vertical,
we see that the same trends occur in this problem too.

We can now explain a number of the features found in our fully nonlinear simula-
tions. The patterns of convection in figure 4(c), where B was switched off, is dominated
by the viscous modes, and so is the convection in figures 10(d)—(f), the stress-free case
where A is small. The tendency of the magnetically controlled plumes to be off-axis
is also understandable, because in figure 8 we see that the strongest axial field
occurs close to the TC, where it has diffused in, and it is weaker directly over the
pole. From table 3 we see that minimum critical Ra occurs at A ~4 and so
the plume seeks out the location where the field has this value, which is not over
the pole itself.
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An advantage of the simple model is that we can evaluate the behaviour in the
limit £ — 0, which is not possible in numerical simulations, for reasons of numerical
stability. In the stress-free case, Chandrasekhar (1961, pp. 202, 203) shows that the
minimum critical Ra occurs when x = a®/n” satisfies

En*(1+x)* — A = 1)

Er?Q2xX +3x° =)= A +4 -
[Ex2(1 + x)* + A]

(16)

The critical Rayleigh number is then

n%l+quEﬁ%l+xf—%Af+40-%x»
Ra = 5 . (17)
x[Ex*(1 +x)° + A]

At small E, the cross-over point at which viscous modes and magnetic modes have the
same critical Rayleigh number has A = O(E'/?). The viscous modes have x = O(E~%/3),
so the dominant balance in (16) is 2En’x’ ~ 4/En’, giving a ~ 2/7'3E~1/3 and
Ra~ 6 - 27'37%3E-13 For the magnetic modes, taking the limit E— 0 in (16)
gives A2~ 4(x2—1) or a~ n(l + A?/4)"/* Near the cross-over point, magnetic
modes have x ~ 1, and then Ra ~ 167°/A. The cross-over point is therefore given
by equating the magnetic and viscous critical Rayleigh numbers to get
Across ~ 8213723 EV3 /3 ~ 7.2FE"3. This fits well with the results in table 3, which
also shows that the no-slip boundary case gives very similar values. As far as the size
of the magnetically controlled columns is concerned, E = 10~* is not far off the asymp-
totic limit. At A = 100 we found a radial wavenumber ¢ = 17.82 at E = 10, whereas
for £ — 0 the wavenumber is a=22.22, giving a slightly smaller column. The same
trend is found for lower A, so we may expect the £ — 0 columns to be about 25%
thinner than our calculations show.

The dynamics of the magnetic mode of convection are not completely straightfor-
ward. In steady non-magnetic non-rotating convection, the buoyancy force from hot
fluid is directly balanced by the viscous drag on the rising plume. In low E rotating
magnetoconvection, the viscous force is negligible. The hot plume drives a thermal
and magnetic wind which swirls around the plume axis (equation (10)). This swirl gen-
erates a transverse B wrapped around the plume from the axial field through the
‘omega-effect’, and hence an axial current (equation (12)). The Lorentz force then
creates a u. that varies with height through equation (9), allowing the plume to rise.
If there is no magnetic field, u. can only vary with z through the effect of viscosity
(small at low E); the no penetration boundary condition then forbids any axial
motion, or more exactly only allows an O(E%) Ekman suction velocity which is also
small at low E. An interesting question is the relative importance of the magnetic
wind term compared with the thermal wind in equation (10). Since the required swirl
can be generated solely by the thermal wind it is not essential for magnetoconvection;
the key part of the Lorentz force is the part which overcomes the Proudman—Taylor
constraint in equation (9). However, the magnetic wind term is responsible for the nar-
rowing of the convection columns at large A. Without the magnetic wind term, the
horizontal wavenumber decreases from a ~ 7(1 + A2/4)"/* down to a ~ 7, so without
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the magnetic wind we would not see the thinner plumes at larger Ra (compare
figures 3(c) and 3(d).

Atlow A the magnetically controlled plume would fill the entire region inside the TC.
This is a possible regime for the geodynamo, though a difficult one for simulations.
Since the cross-over point is at A, & 7.2E'/3, at the so-called ‘turbulent’ value of
E ~ 107, where v and « have the same value as 1, Ao = 7.2 x 1073, This is less
than the observed dipole field at the CMB, so that polar convection is almost certain
to be magnetically controlled. However, it is possible that the geomagnetic field lies
in the range 7.2 x 1073 < A < 1 where the field is magnetically controlled, but the mag-
netic wind is small so that the convective plume fills the whole of the polar region inside
the TC. In our simulations, A is higher because of larger E, and so the regime
Agoss < A < 1 is only a small region of parameter space.

5. Discussion and conclusions

In Sreenivasan and Jones (2005), the existence of large off-axis thermal plumes in the
polar regions which gave rise to anticyclonic vorticity was noted. The westward drift
of these patches was also investigated. In this study we investigated the robustness of
the large thermal plumes by varying the parameters and boundary conditions in a
systematic manner. The thermal plumes have been shown to be related to the magnetic
mode of convection, and thus require a minimum field strength in the polar regions.
If the field is below threshold, the convection instead takes the form of thin plumes,
which nevertheless can give a systematic anticyclonic vortex, as discussed by Aurnou
et al. (2003).

When applying the results of spherical dynamo simulations to the behaviour inside
the core a number of factors must be kept in mind. Since the parameter regime is far
from that of the Earth, we must interpret the enhanced diffusion processes we use as
arising from small scale turbulence, which we assume to be isotropic. This may not
be the case (Braginsky and Meytlis 1990). Also, there is uncertainty about whether
stress-free or no-slip boundary conditions are more appropriate in these circumstances,
and whether compositional convection (which has zero flux at the CMB) or thermal
convection (which has non-zero flux at the CMB) is dominant, and what is the appro-
priate value of the Rayleigh number. Making different choices could potentially alter
the form of core convection significantly. However, a number of fairly robust features
have emerged from this study.

(i) Inertial dominance (see the case Pr = Pm = 0.2 in figures 1 and 2) gives rise to a
cyclonic (eastward) zonal flow. Low inertia is an essential precondition for the
generation of an anticyclonic polar vortex. In a simplified case where only even
azimuthal modes are retained in the calculations, a strong axisymmetric upwelling
flow is generated centered at the polar axis. The thermal wind associated with
the hot plume is progressively more anticyclonic as we move upward from the
ICB. Consequently, an anticyclonic or ‘retrograde’ thermal wind is generated
at the CMB and a weaker prograde azimuthal flow, as seen in some models
is visible at the ICB.

(i) Convection in the polar regions can take one of two forms, the magnetic mode
and the viscous mode. The viscous modes take the form of many tall thin
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columns, while the magnetic mode of convection gives a larger coherent structure,
usually with one or more dominant plumes. Both forms of convection give rise to
an anticyclonic vortex. The magnetic vortex is usually much stronger locally,
whereas the non-magnetic vortex obtained from the thin columns seen in
figure 4(c) is much weaker and more widespread in an axisymmetric manner.
The total axial vorticity averaged over the whole polar cap inside the TC can
be similar in both types of convection.

(iii) In computations where no azimuthal symmetry is imposed, a localized ‘hot spot’
extending from a section near the ICB right up to the polar region, but offset
from the polar axis is often formed. From the meridional plot of u, shown
with the tangent cylinder region magnified (figure 7), we find that the plume
core is displaced by ~10° from the rotation axis, though the plume axis is
still fairly parallel to the rotation axis. The hot spots are associated with rising
convective plumes and have anticyclonic vorticity near the CMB. These
hot spots are the manifestation of the magnetic mode of convection. The radial
magnetic field above a hot spot at the CMB is weaker than average, and very
strong plumes may even have reversed flux above them.

(iv) The basic properties of the magnetic mode of convection can be modelled by a
plane-layer rotating magnetoconvection model (Chandrasekhar 1961). In particu-
lar, both this model and the computations show that for the magnetic mode the
plume width decreases as the field strength increases, and that the azimuthal flow
twists the axial field into an azimuthal field. The plane-layer model has a sharp
transition between the viscous mode and the magnetic mode at A = 7.2E'/3.
The computations suggest this transition is not quite so sharp in spherical geom-
etry, but all cases where A,,,, < 2 have many thin weak plumes, whereas all runs
with A,,.x > 10 are dominated by a single strong plume, though some weaker
plumes may also be present. However, with a more strongly supercritical
Rayleigh number, convection might be vigorous enough to expel flux from the
rising plumes. If this happens, then narrower plunes might occur inside the TC
than would be expected from the linear magnetoconvection model.

As mentioned in section 3.2, we noticed that the strong offset plume does not
remain at the same longitude, but migrates in a rather irregular fashion, but gen-
erally westward. If the large reversed flux patch seen in the north polar region
(Olson and Aurnou 1999) is identified with the strongly upwelling magnetic mode
of convection found in our simulations, then the drift velocity of the polar reversed
flux patch should be identified with the drift velocity of the hot spot. The polar
reversed flux patch drifts westward, as do our magnetic mode hot spots, but the
drift velocity of 0.25° per year given by Olson and Aurnou is faster than our typi-
cal drift velocity. Locally, we do see rotation rates of this order of magnitude about
the axis of the upwelling. Thus the vortex seen at Ra= 1450 in figures 3(d) and 7(b)
rotates anticyclonically about its off-centre axis at about this angular velocity, but
because the vortex only occupies a small fraction of the polar region the global
rotation rate of the whole polar cap is considerably less than this, and so our
hot spots drift more slowly than 0.25° per year. Indeed, the drift speed of our
hot spots may be controlled by their interactions with other weaker vortices, as
much as by the global flow it induces. We note that the wind speed inside a tor-
nado often exceeds 100 m.p.h., but the drift speed of the whole structure can be
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30m.p.h. or less. Possibly our rather low drift velocity indicates that the Rayleigh
number should be increased further. Also we note that a conducting inner core
leads to stronger vortices.

With stress-free boundaries, the magnetic mode of convection is excited at high
values of Ra, but results with stress-free boundaries are quite different from those
with rigid boundaries at moderate values of Ra (750-1100). In rapidly rotating convec-
tion, the dissipation of convective modes is generally dominated by the bulk dissipation
and not the boundary layers, and there is no great difference in table 3 between the
stress-free and no-slip cases. Why then does the magnetic mode of convection not
occur with stress-free boundaries at Ra ~ 1000? The magnetic mode of convection
requires a strong magnetic field inside the tangent cylinder for it to occur, but when
it does occur, the strong upward axial flow concentrates any external field and so rein-
forces the local magnetic field. The slightly lower magnetic field just outside the tangent
cylinder in the stress-free case may be insufficient to get this process started, whereas the
slightly stronger field generated by the no-slip boundaries is enough to set the magnetic
mode plumes off. If this is the case, it may be quite hard to predict when magnetic
modes occur, and they may also be subject to hysteresis. Once the concentration of
field has occurred, magnetic modes might survive a reduction in Rayleigh number,
but to get them to onset from an initial condition with low magnetic field near the
TC may require a much higher Rayleigh number. However, by Ra=1750 with
Pr = Pm = 10 the field outside the TC has become strong enough even with stress-
free boundaries for the magnetic mode of convection to occur.

Another issue is the relation of the magnetic mode plumes to the observed radial field
on the CMB. This is important because all our observational information about polar
vortices is derived from monitoring the secular variation. There does seem to be a
strong correlation between upwelling regions and weaker than average B,, and down-
welling regions have stronger than average B, (compare figure 9a and c¢). However,
our models do not produce the strong reversed field seen in the north polar regions,
but only a rather feeble reversed field patch. It is clear that our understanding of
polar convection in the core is still far from complete, but getting the observed behav-
iour of the geomagnetic field near the poles is a powerful constraint on geodynamo
models. It is possible that the magnetic mode of convection would produce stronger
reversed flux patches at higher Ra, though this is not certain. There does not appear
to be much dynamo action inside the TC in our models: the field is mainly generated
outside the TC, and then diffuses into the TC where it is massaged by the magnetocon-
vection. It may be that genuine dynamo action inside the TC is required to produce
strong reversed flux patches.
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