
Geophysical Journal International
Geophys. J. Int. (2014) 199, 1698–1708 doi: 10.1093/gji/ggu340

GJI Geomagnetism, rock magnetism and palaeomagnetism

The role of buoyancy in polarity reversals of the geodynamo

Binod Sreenivasan, Swarandeep Sahoo and Gaurav Dhama
Centre for Earth Sciences, Indian Institute of Science, Bangalore 560 012, India. E-mail: bsreeni@ceas.iisc.ernet.in

Accepted 2014 September 2. Received 2014 September 1; in original form 2014 June 29

S U M M A R Y
We investigate polarity reversals in the geodynamo using a rotating, convection-driven dynamo
model. As the flow in rapidly rotating convection is dominated by columns aligned with the
axis of rotation, the focus is on the dynamics of columnar vortices. By studying the growth of
a seed magnetic field to a stable axial dipole field, we show that the magnetic field acts in ways
that significantly enhance the relative helicity between cyclonic and anticyclonic vortices.
This flow asymmetry is the hallmark of a dipolar dynamo. Strong buoyancy, on the other
hand, offsets the effect of the magnetic field, establishing parity between positive and negative
vortices. As the dipole field is deprived of the helicity required to support itself, the dynamo
is pushed into a reversing state. This is a likely regime for polarity reversals in the Earth’s
core. The integral lengthscale at which buoyancy injects energy is not significantly different
from the convective flow lengthscale, which implies that buoyancy does not feed vortices at
the small scales where non-linear inertia is present. The lengthscale at which the Lorentz force
acts in the reversing dynamo is small, which may allow the passive presence of non-linear
inertia in the small scales.

Key words: Numerical solutions; Dynamo: theories and simulations; Reversals: process,
timescale, magnetostratigraphy; Planetary interiors.

1 I N T RO D U C T I O N

Geomagnetic reversals are perhaps the most interesting phenomena
in geophysics. The dynamo operating in the Earth’s outer core gen-
erates a predominantly north–south dipole magnetic field for long
periods, but occasionally the magnetic dipole axis flips its orienta-
tion and retains its approximate alignment with the Earth’s rotation
axis. Although the current reversal frequency of the Earth’s field
is approximately 4 Myr−1, the last reversal happened as long as
0.78 Ma and there have been long periods without recorded rever-
sals, such as the Cretaceous Normal Superchron of 118–83 Ma.
Excursions, the periods during which the dipole axis deviates con-
siderably from the pole before returning to its original state, are more
frequent in Earth’s history. As reversals and excursions are likely to
originate from similar convection states of the core (Gubbins 1999;
Valet et al. 2005), it is possible that the geodynamo operates for
long periods in a narrow transition zone that lies between dipolar
and chaotic field configurations (Olson & Christensen 2006). In
between, however, the dynamo might pass through relatively ‘qui-
escent’ periods of small secular variation that make the superchrons
(McFadden & Merrill 1995).

Ever since the first polarity reversals were realized in numerical
dynamo simulations (Glatzmaier & Roberts 1995a,b) several other
studies have reported reversals in comparable parameter regimes
(Sarson & Jones 1999; Wicht & Olson 2004; Aubert et al. 2008;
Nishikawa & Kusano 2008; Olson et al. 2009, to name a few).

Diverse processes that take place during reversals have been iden-
tified, such as fluctuations in the meridional flow, formation of up-
wellings and breakdown of equatorial symmetry. There is, however,
a broad agreement on two points: (i) Increasing the strength of the
driving force pushes the dynamo from a stable dipole to a reversing
regime (see, for example, Kutzner & Christensen 2002; Driscoll &
Olson 2009); (ii) Reversals are ‘kinematic’ in the sense that the back
reaction of the magnetic field on the flow appears to be small (see
Sarson & Jones 1999; Wicht & Olson 2004; Rotvig 2009). As the
second point above appears somewhat subtle, we shall re-examine
the role of the magnetic field in the reversing dynamo, considering
the local magnitudes of forces along columns parallel to the axis of
rotation (z) which form in rapidly rotating convection.

An important issue that faces the dynamo theorist is whether
polarity reversals in the geodynamo are caused by buoyancy-driven
instabilities or by the dominance of non-linear inertia (that is, ad-
vection of momentum). Inertia is likely to play a role in several
dynamo models because the parameters used are such that the
Rossby number, Ro = u/�L, which gives the ratio of inertial to
Coriolis forces, is not small. (Here, u is the typical convective
velocity, � is the background rotation rate and L is a length-
scale of the order of the core depth.) Multipolar dynamos are
obtained rather easily by operating at low values of the mag-
netic Prandtl number, Pm (Grote et al. 2000), upon which non-
linear inertia enters the force balance by knocking out the magnetic
Lorentz force in the Magnetic–Buoyancy–Coriolis (MAC) balance
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(Sreenivasan & Jones 2006). Furthermore, the transition from dipo-
lar to multipolar states happens when a local Rossby number, de-
fined based on the lengthscale of convection rolls, takes on a value
of ∼0.1 (Olson & Christensen 2006), which suggests that inertia
may not be small at the lengthscale of a fluid roll. It is not clear
from simulations that reversals can happen in a strongly driven,
yet low-inertia parameter regime (although this appears possible in
Takahashi et al. 2005). In view of this, we investigate the role of
inertia by looking at some typical lengthscales in the reversing and
non-reversing regimes.

There is a significant body of literature that addresses the role of
the lower mantle in controlling the frequency of polarity reversals
(e.g. Glatzmaier et al. 1999; Kutzner & Christensen 2004; Olson &
Amit 2014). Since compositional buoyancy is strong in present-
day Earth, and the maximum variation in core–mantle boundary
(CMB) heat flux is not likely to significantly exceed the mean heat
flux through the core, the reversal process should have origins in
buoyancy-driven instabilities in the core itself rather than in external
heat flow variations. The lower mantle might have had a dominant
role in producing reversals in early Earth when the core was largely
thermally driven. In this paper, we do not look at the frequency
of the reversals produced, but rather confine ourselves to the study
of the reversal mechanism in strongly supercritical (thermochemi-
cal) convection that characterizes present-day Earth’s core.

This paper stems from the idea that any explanation of polar-
ity reversals must originate from an explanation of the preference
for the axial dipole in rapidly rotating dynamos. Studies of ro-
tating, convection-driven dynamos show that there is a large re-
gion of the parameter space where the axial dipole dominates (e.g.
Katayama et al. 1999; Olson et al. 1999). The preference for axial
dipoles is not simply a matter of having columns parallel to the
rotation axis z with the right equatorial symmetry for the veloc-
ity. Rather, these coherent structures are affected by a pre-existing
dipole magnetic field in ways that significantly enhance their helicity
(Sreenivasan & Jones 2011); and since helicity is an important quan-
tity for dynamo action (Moffatt 1978), the dipole field is preferred
over other polarities. Whereas it is known that rotation via the Cori-
olis force acts as a source of vorticity (Chandrasekhar 1961), the
magnetic field via the Lorentz force adds to the vortex stretching
and a strong buoyancy force can potentially inhibit this process in
ways that are yet to be understood. In this paper, we shall first test the
hypothesis that the dipole magnetic field has self-generated helicity;
we shall then address the polarity reversal problem by studying the
effect of buoyancy on the dipole field.

2 N U M E R I C A L F O R M U L AT I O N

We consider an electrically conducting fluid between two concen-
tric, corotating spherical surfaces that correspond to the inner core
boundary (ICB) and the CMB. The ratio of inner to outer radius is
chosen to be 0.35. For simplicity, we assume that the fluid is subject
to a thermal buoyancy-driven convection, although our set of equa-
tions can also be used to study thermochemical convection using
the codensity formulation (Braginsky & Roberts 1995). The other
body forces acting on the fluid are the Lorentz force, arising from
the interaction between the induced electric currents and the mag-
netic fields and the Coriolis force originating from the background
rotation of the system.

The governing equations considered are those in the usual Boussi-
nesq approximation (Kono & Roberts 2002). Lengths are scaled by
the thickness of the spherical shell L, and time is scaled by the mag-

netic diffusion time, L2/η, where η is the magnetic diffusivity. The
velocity field u is scaled by η/L, the magnetic field B is scaled by
(2�ρμη)1/2 where � is the rotation rate, ρ is the fluid density and
μ is the magnetic permeability. The scaled magnetic field, known
as the Elsasser number, � is an output derived from our dynamo
simulations as a root mean square (rms) value, where the mean is a
volume average.

The non-dimensional magnetohydrodynamic (MHD) equations
for the velocity, magnetic field and temperature are

E Pm−1

(
∂u

∂t
+ (∇ × u) × u

)
+ ẑ × u

= −∇ p� + Ra q T r + (∇ × B) × B + E∇2u, (1)

∂B

∂t
= ∇ × (u × B) + ∇2B, (2)

∂T

∂t
+ (u · ∇)T = Pm Pr−1 ∇2T, (3)

∇ · u = ∇ · B = 0. (4)

The dimensionless parameters in these equations are the Ekman
number, E = ν/2�L2 that measures the ratio of viscous to rota-
tional forces, the Prandtl number, Pr = ν/α that gives the ratio
of viscous to thermal diffusivities, the magnetic Prandtl number,
Pm = ν/η that gives the ratio of viscous to magnetic diffusivi-
ties and the Rayleigh number (see below). The Roberts number,
q = PmPr−1 is the ratio of thermal to magnetic diffusivities. The
basic-state non-dimensional temperature profile represents a con-
ventional basal heating, Tb(r) = β/r, where β is a constant. We set
an isothermal condition at the ICB and a constant heat flux con-
dition at the CMB. The modified Rayleigh number (the product of
the classical Rayleigh number and the Ekman number) is based on
the basic state heat flux, and is given by Ra = gγβ/2�κ , where
g is the gravitational acceleration acting radially inwards, γ is the
coefficient of thermal expansion and κ is the thermal diffusivity.
The velocity and magnetic fields satisfy the no-slip and electrically
insulating conditions, respectively (Sreenivasan & Jones 2006). The
Ekman number in our calculations is kept fixed at 3 × 10−4, the
Prandtl number is 1 and the magnetic Prandtl number is 5. These pa-
rameters were chosen so as to obtain polarity reversals at Rayleigh
numbers that are large enough and yet achievable computationally.

3 R E S U LT S

3.1 Asymmetry induced by the magnetic field and its
attenuation by buoyancy

We examine the role of buoyancy in the transition from a stable,
dipole magnetic field state to a polarity flipping state by varying
the Rayleigh number, Ra in steps in the range 200–1350 (Ra/Rac

≈ 5–33, where Rac is the critical Rayleigh number for onset of
convection) while keeping the other parameters (Ekman number,
Prandtl number and magnetic Prandtl number) fixed. Fig. 1 shows
the magnetic colatitude of the dipole field, θ at the upper boundary
(CMB) obtained from spherical-harmonic dipole coefficients, as
follows:

cos θ = g0
1/ |m|; m = (

g0
1, g1

1, h1
1

)
, (5)

and

g0
1 = P10, g1

1 = −2 �(P11), h1
1 = 2 �(P11), (6)
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Figure 1. Dipole colatitude versus magnetic diffusion time for dynamo simulations at (a) Ra = 810, (b) Ra = 990 and (c) Ra = 1350.

Figure 2. Streamlines of the Y 0
1 component of the magnetic field vector shown at three different snapshots in time during a polarity reversal at Ra = 990. The

diffusion times are (a) 7.184; (b) 7.221; (c) 7.287.

where P is the poloidal part of the magnetic field. Fig. 1 shows that
the non-reversing axial dipole component is dominant for Ra = 810,
whereas for Ra = 990, excursions and reversals of the dipole are
present. The case Ra = 1350 is a chaotic, multipolar dynamo. The Y 0

1

component of B for Ra = 990 is shown in Fig. 2 for three snapshots
in time—at the start, during and at the end of a polarity reversal. The
reversal period is ≈0.1 magnetic diffusion times, which is consistent
with the estimate of a few thousand years for the core (Merrill &
McFadden 1999; Dormy et al. 2000). The reverse flux originates in
the Northern and Southern tangent cylinder region and grows to fill
the entire hemisphere, somewhat similar to what was noted in some
previous reversal simulations (Wicht & Olson 2004).

As one of the aims of this study is to understand the transition
in dynamic behaviour as the dynamo enters a reversing regime, we
begin the study with a run that produces a stable, non-reversing axial
dipole. Fig. 3 shows the non-linear evolution in time of magnetic and
kinetic energies for the run at Ra = 300 (Case 2, Table 2) starting
from a seed magnetic field that has a dominant dipole component—
that is, the radial and azimuthal components of the magnetic field
are approximately antisymmetric about the equator. The magnetic
field grows rapidly after about three magnetic diffusion times and
saturates to a stable dipole field of Elsasser number ≈2.35. The rise
in magnetic energy is accompanied by a fall in the kinetic energy,
signifying transfer of energy from the velocity field to the mag-
netic field by the Lorentz force. The growth of the magnetic field
heralds a dramatic change in both magnitude and structure of the
velocity field. In volume plots of isosurfaces of the axial velocity,
uz (Fig. 4), the positive (red) and negative (blue) values are shown

Figure 3. Evolution of kinetic energy (dotted line) and magnetic energy
(solid line) with magnetic diffusion time for the dynamo simulation at
Ra = 300, starting from a seed magnetic field.

separately for clarity. Figs 4(a) and (b) show a snapshot in the early
(small-field) phase of the run (td = 1.377 in Fig. 3), where both pos-
itive and negative velocities are evenly distributed over the volume.
The saturated phase in (c) and (d) (td = 7.284 in Fig. 3) shows a
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Figure 4. Volume plots of isosurfaces of the axial velocity, uz , with positive values shown in red and negative values in blue. The snapshots shown (with values
in brackets) are (a and b) Ra = 300, td = 1.377 (±220); (c and d) Ra = 300, td = 7.284 (±220); (e and f) Ra = 630, td = 5.04 (±300); (g and h) Ra = 990,
td = 2.47 (±380). Also see Fig. 7 for the time-series at different Rayleigh numbers.

Figure 5. Isosurfaces of the axial vorticity, ωz , with positive values shown in red and negative values in blue. The cases shown are (a and b) Ra = 300,
td = 1.377; (c and d) Ra = 300, td = 7.284; (e and f) Ra = 630, td = 5.04; (g and h) Ra = 990, td = 2.47. The contour levels in each set of plots are ±4000.

marked asymmetry between the two signs of velocity. Positive ve-
locities are favoured in the Northern (upper) hemisphere, whereas
negative velocities dominate in the Southern (lower) hemisphere.
A similar picture emerges for a broad range of contour levels. For
small contour levels (<±100), both positive and negative velocities
are denser than in Figs 4(c) and (d), but the asymmetry between the
signs exists. The flow asymmetry is not obvious at large contour lev-
els, but their spatial distribution is too sparse to provide the physical
picture that we seek. From Figs 4(e)–(h), we note that the asymme-

try between the two signs of velocity diminishes for Ra = 630, and
is nearly absent for Ra = 990. The effect of the dipole magnetic
field (Ra = 300) and the effect of increasing Rayleigh numbers
(Ra = 630, 990) also show up in the distribution of axial vortic-
ity, ωz (Fig. 5). In the early phase of Ra = 300, both cyclones
(positive ωz , coloured red) and anticyclones (negative ωz , coloured
blue) are equally distributed (subfigures a and b, Fig. 5), whereas
the saturated phase of the same run has a marked preference for
anticyclonic vorticity (subfigures c and d, Fig. 5). As the Rayleigh
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Figure 6. Time-averaged isosurfaces of the z-helicity, with anticyclonic helicity in the upper panel and cyclonic helicity in the lower panel. The contour levels
shown are ±2 × 105. Positive values are shown in red and negative values in blue. The cases shown are (a and b) Ra = 300 (non-magnetic); (c and d) Ra = 300
(saturated dipole); (e and f) Ra = 630; (g and h) Ra = 990.

number is increased to 630 and then 990, the skewness in vortic-
ity gradually disappears (see e–h, Fig. 5). In effect, the magnetic
field in the dynamo enhances axial fluid motion from the equa-
tor to higher latitudes, aiding the flow in anticylones and negating
the flow in cyclones. For moderate Rayleigh numbers, anticyclonic
vorticity is dominant, whereas cyclonic vorticity is attenuated. For
large Rayleigh numbers, the strong buoyancy appears to offset the
asymmetry produced by the magnetic field.

Fig. 6(a–h) gives the time-averaged volumetric distribution of
axial kinetic helicity (uzωz) contained in cyclones and anticyclones
in separate panels. We consider the axial part of the scalar helicity
because we are primarily interested in columnar fluid motion. For
the ‘non-magnetic’ run at Ra = 300 (subfigures a and b, Fig. 6)
we set the initial magnetic field to a very small value, so that the
back reaction of the magnetic field on the flow remains small for at
least eight magnetic diffusion times. For this run, both cyclonic and
anticyclonic helicity are present in approximately equal measure.
By contrast, in the saturated dipole regime of Ra = 300 the helicity
is largely confined to the anticyclones (subfigures c and d, Fig. 6).
This shows that the asymmetries in the velocity and vorticity are in
phase, producing an amplified asymmetry in the helicity. Now, as
the Rayleigh number is increased to 630 and 990 (subfigures e–h,
Fig. 6), cyclonic helicity reappears, and eventually becomes dense,
although the anticyclonic helicity is still dominant.

The line plots for the time evolution of axial kinetic energy den-
sity and helicity, shown in Fig. 7, support our findings so far: For
the non-magnetic (that is, approximately kinematic) simulation at
Ra = 300, the kinetic energies in cyclones and anticylones almost
overlap, and the same can be said of helicity (subplots a and b,
Fig. 7). The initial phase of the dynamo simulation at Ra = 300
shows a similar behaviour, but the saturated phase is different in
that the cyclones have lost more kinetic energy (and helicity) than
the anticyclones (subplots c and d, Fig. 7). At higher Rayleigh num-
bers (630 and 990), the cyclones carry almost the same kinetic
energy as the anticyclones, although the anticyclonic helicity is

still dominant in the reversing dynamo at Ra = 990 (subplots e–h,
Fig. 7). In short, a non-reversing dipole exists in a regime where
the magnetic field via the Lorentz force generates a preferred flow
that supports the pre-existing field, whereas polarity reversals occur
when the buoyancy force is large enough to offset the action of
the magnetic field. In the next section, we shall see how buoyancy
can overcome the preference for dipolar solutions even when the
Lorentz force is significant.

To obtain a better feel for the distribution of energy and helicity
in the dipolar and reversing regimes, we performed the following
additional diagnostics for the upper (Northern) hemisphere, which
are presented in Table 1:

(1) A relative kinetic energy from ‘positive’ and ‘negative’
kinetic energy values:

ER = Ez+ − Ez−
Ez+ + Ez−

, (7)

where Ez+ = 1
2

∫
u2

z+dV is made up of only positive values of the
velocity, and Ez− is made up of only negative values. For the non-
magnetic simulation at Ra = 300, ER = 5.14 per cent, whereas
for the saturated dipole regime at Ra = 300, ER is boosted to
22.76 per cent. In the reversing regime (Ra = 990), ER falls to about
16 per cent.

(2) The ratio of the ‘positive’ kinetic energy to the total kinetic
energy, Ez+/Ez , in cyclonic and anticyclonic vortices. For the non-
magnetic (NM) run at Ra = 300, the bulk of the energy in anticy-
clones is made up of positive (upward) velocity, whereas negative
(downward) velocity dominates in the cyclones, consistent with the
classical picture of non-magnetic convection (Olson et al. 1999).
For the saturated dynamo at Ra = 300, Ez+/Ez in anticyclones has
surprisingly not changed much, whereas in cyclones it has increased
sharply from the non-magnetic state (Table 1). Since the equator-
bound flow in cyclonic vortices is countered by the Lorentz force-
driven flow, the vorticity skewness (subfigures c and d, Fig. 5) is due
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Figure 7. Upper panel figures show the total z-kinetic energy density, 1
2

∫
u2

z dV versus magnetic diffusion time, separately for anticyclones (solid lines) and
cyclones (dashed lines). Lower panel figures show the total z-helicity,

∫
uzωzdV for the lower hemisphere only, separately for anticylones and cyclones. The

cases shown are (a and b) Ra = 300 (non-magnetic); (c and d) Ra = 300 (dynamo evolution from seed field to saturated dipole); (e and f) Ra = 630; (g and h)
Ra = 990.

Table 1. Summary of diagnostics performed for the upper (Northern) hemi-
sphere. NM stands for non-magnetic, D stands for the saturated dynamo,
A for anticyclones and C for cyclones. ER is the relative z-kinetic energy
density, defined by (7), Ez+ is the z-kinetic energy calculated from positive
z-velocity, Ez is the total z-kinetic energy and HR is the relative helicity
defined by (8).

Ra (Run) 300 (NM) 300 (D) 630 (D) 900 (D)

1 ER, per cent 5.14 22.76 16.86 15.88
2(a) Ez+/Ez , per cent (A) 81.36 80.43 77.65 75.44
2(b) Ez+/Ez , per cent (C) 18.41 31.43 34.04 37.57
3 HR, per cent 17.89 48.69 45.33 44.62

to the compression of positive vorticity rather than the stretching of
negative vorticity.

(3) A relative helicity, defined by

HR = HA − HC

HA + HC
, (8)

where H is the volume integral of z-helicity and the subscripts A
and C refer to anticylones and cyclones. For the same Rayleigh
number, the difference in HR is large between strongly magnetic
and non-magnetic states (Table 1). The growth in HR is mainly due
to a fall in the cyclonic helicity rather than a rise in the anticyclonic
helicity (Figs 6 and 7); nevertheless, HR is a useful measure of
the helicity generated by the action of the magnetic field. As the
Rayleigh number is increased, HR decreases, but not significantly,
showing that a modest reduction in HR is enough to push the dynamo
into a reversing regime.

3.2 Analysis of the vorticity equation

On time and volume average, the curl of the momentum equation
takes the form

∇ × (∇ × B) × B︸ ︷︷ ︸
M

+ q Ra∇ × (T r)︸ ︷︷ ︸
A

+ ∂u/∂z︸ ︷︷ ︸
C

− E Pm−1 ∇ × (ω × u)︸ ︷︷ ︸
I

+ E∇2ω︸ ︷︷ ︸
V

= 0, (9)

where ω = ∇ × u. Here, the letters M, A, C, I and V represent
the Magnetic (Lorentz force), Archimedean (buoyancy), Coriolis,
non-linear Inertial and Viscous diffusion terms. Non-linear iner-
tia is considered to be unimportant in the core because magnetic
fields at the Rhines length scale (where inertia is important) will
decay in less than a year (Sreenivasan & Jones 2006). In the next
section, we examine whether non-linear inertia is likely to affect
the reversal process. Due to the low Ekman number in the core,
viscous diffusion would be small except in the Ekman layers at the
top and bottom. In short, the geodynamo is likely to operate in an
approximate balance between the MAC forces (Taylor 1963; Bra-
ginsky 1967). However, both inertial and viscous forces are certain
to play a role in numerical dynamo models because it is not yet
possible to solve the dynamo at realistic values of the Ekman num-
ber. Keeping in mind that our simulations at E = 3 × 10−4 are also
likely to be affected by the artificial enhancement of inertial and
viscous effects, we study the force balances in the non-reversing
and reversing regimes, and the transition from one regime to the
other. Fig. 8 gives the time-averaged, rms values of the terms in the
vorticity equation as a function of the axial coordinate, z. Two cases
are presented: Ra = 300 and 990. In subplots (a) and (c), all compo-
nents are considered in evaluating the rms value, whereas in (b) and
(d) attention is focused on the z-component, as we are particularly
interested in columnar dynamics. The total rms plots show that the
primary balance is between the Coriolis and buoyancy terms (the
well-known thermal wind balance), except in the tangent cylinder
region (z > 1.44). The inertial and viscous terms are much smaller
than the Coriolis term, showing that the dynamo is in a rapidly ro-
tating regime. For Ra = 300, the curl of the Lorentz force term is the
third largest in magnitude for much of z, whereas at Ra = 990, this
term is almost of the same order as the viscous and inertial terms.
The z-rms plots in (b) and (d), on the other hand, show a markedly
different behaviour: the dominant terms in the z-component of
eq. (9) are the Coriolis (C) and the Magnetic (M) terms. This result
is significant because it shows that the magnetic field has a strong
effect on the columnar flow. For the non-reversing dipole state at
Ra = 300, the M and C terms follow each other closely for almost
all z; for the reversing regime at Ra = 990, M can even locally ex-
ceed C. The A term expectedly decreases from the equator (z = 0)
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Figure 8. Upper panel figures give the time-averaged root mean square (rms) values of the terms in the vorticity equation as a function of the axial coordinate, z.
Lower panel figures give the rms values of the z-component of the respective terms. The mean in rms is taken over the number of points at every z-section. The
cases shown are (a and b) Ra = 300 (saturated dipole); (c and d) Ra = 990 (reversing). The terms plotted are magnetic, M (blue), buoyancy, A (red), Coriolis,
C (black), non-linear inertia, I (green), viscous diffusion, V (magenta).

to the polar region and is smaller in magnitude than M and C. The
I and V terms are not very small in the z-component, which means
that they also enter the balance of terms in our model.

Fig. 9 gives the time-averaged MAC terms in the z-component
of eq. (9) on a cylinder (z–φ plane) of radius s = 1, approximately
midway between the cylinders that touch the ICB (s = 0.538) and
CMB (s = 1.538). Analysis in cylindrical polar coordinates (s, φ,
z) offers more insight than in spherical coordinates when we are
concerned with columnar convection. Moreover, we ensure that the
terms are not averaged over z or φ because we expect the dynamics
in eq. (9) to be three-dimensional. The azimuthal structure of the
solution does not disappear while averaging over several magnetic
diffusion times because of the inherent flow asymmetry in the sys-
tem. We first consider the stable dipole case at Ra = 300, where
there is a strong correlation between the magnetic (M) and Coriolis
(C) forces, as shown in Figs 9(a) and (c). For an axial dipole field,
magnetic damping peaks not at the equator, but in regions above
and below the equator, thereby producing coherent bands of positive
∂uz/∂z between z = 0 and z = ±0.5. This important role of the mag-
netic field in stretching vorticity was predicted by Sreenivasan &
Jones (2011) in their linear magnetoconvection model, wherein an
azimuthal field with equatorial antisymmetry (that mimics an axial
dipole) was imposed. The effect of magnetic friction is experienced

equally in cyclones and anticyclones, which would adequately ex-
plain the asymmetry in the columnar flow (subfigures c and d,
Fig. 4), and the asymmetry in vorticity (subfigures c and d, Fig. 5).
The back reaction of the magnetic field on the flow would be weak
in a quadrupolar field configuration, wherein the driving buoyancy
force and the damping magnetic force both peak at the equator.
Unfortunately, it is not possible to study a quadrupolar field in our
non-linear dynamo simulation because, irrespective of the structure
of the starting seed field, the final field is always a dipole. (This
point is not elaborated further as it will be the subject of a separate
paper). We can, however, compare the saturated dipole state with
the non-magnetic state at the same Rayleigh number (Fig. 10), in
which case the curl of the buoyancy and Coriolis forces have neatly
packed structures aligned with the rotation axis.

It is clear from our simulations that, under rapid rotation, colum-
nar vortices in convection are affected by the magnetic field in a way
that increases their net helicity. An existing dipole field therefore
holds itself up, which can explain why rotating dynamos should
have a preference for north–south dipole fields. This also takes
us to the central point of this paper—whether strong buoyancy
can offset the effect of the magnetic field, causing collapse of the
dipole. We find from our reversing simulation that this is indeed
possible. In Fig. 9(d), the curl of the magnetic force is strong in
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Figure 9. Contour plots of the time-averaged Magnetic (M), Archimedean (A) and Coriolis (C) terms in the z-vorticity equation, shown in that order, on a
cylinder of radius s = 1. (a–c) Saturated dipole dynamo at Ra = 300. (d–f) Reversing dynamo at Ra = 990.

magnitude, but assumes a small-scale, scrambled structure that ren-
ders it ineffectual in changing ∂uz/∂z through the Coriolis force.
From the oppositely signed correlation between Figs 9(e) and (f) it
is clear that the Coriolis force is largely controlled by buoyancy in
this regime. (This effect would be missed in the azimuthal average
as the z-component of the buoyancy term averages to zero.) The
absence of a coherent ∂uz/∂z implies that the asymmetry in the
flow is significantly reduced; consequently the dynamo is deprived
of the helicity required to support an axial dipole. However, how
does buoyancy offset the magnetic feedback, when it is responsi-
ble for magnetic field generation in the first place? The answer to
this question lies in the saturation mechanism of the dipole compo-
nent of the field, which has not received much attention. Although
the magnetic field is generated by induction, the M–C balance
in the z-vorticity equation places an upper bound on the strength of
the dipole component; so driving the dynamo harder only produces
field components of other (non-dipolar) symmetry. The dynamo
Elsasser numbers given in Table 2 seem to support this line of
thought—for Ra ≥ 990, the rise in Elsasser number likely results
from the growth of non-dipolar field harmonics, unconstrained by
rotation.

3.3 Lengthscales in the dynamo and the role of non-linear
inertia in reversals

If the convective rolls in rotation have extent ∼L parallel to the
rotation axis and a shorter lengthscale, �c perpendicular to �, the
non-linear inertia and Coriolis terms in the vorticity equation give
the following order-of-magnitude estimates:

|∇ × (∇ × u × u)| ∼ u2
�

�2
c

, |(� · ∇)u| ∼ �u�

L
. (10)

A balance between these two forces in the curl gives a very small
value for �c ∼ 4 km, using u� ∼ 4 × 10−4 (Starchenko & Jones
2002). Motions on this lengthscale are not relevant to the geody-
namo process because the magnetic fields generated on this scale
would simply diffuse away on a short timescale of less than a year,
assuming a magnetic diffusivity of 2 m2 s−1. Even if non-linear
inertia is only ∼5 per cent of the Coriolis force, the lengthscale �c is
∼15 km (∼0.007 in dimensionless length units), which is unlikely
to be sustained in the core, and unrealizable in numerical dynamo
models. However, inertia can exist in the core if buoyancy contin-
ually replenishes vortices that are damped by the magnetic field.
To examine this possibility, we calculate the typical lengthscale at
which energy is injected by buoyancy, �E as a weighted average
from the l-spectrum of urT, where ur is the radial velocity and T is
the temperature:

1

�E
= 1

π

∑
l

l ET (l)
∑

l
ET (l)

. (11)

The spectrum ET(l) is obtained from the product of the transform of
urT and its conjugate. The values of �E given in Table 2 suggest that
injection of energy takes place at a lengthscale that is marginally
smaller than the convective flow lengthscale, �c calculated from the
kinetic energy spectrum (Table 2):

1

�c
= 1

π

∑
l

l Ek(l)
∑

l
Ek(l)

. (12)

In other words, lengthscales at which non-linear inertia is important
are not likely to be fed by buoyancy.

A plausible way by which non-linear inertia can find its place in a
reversing dynamo is through a small-scale balance with the Lorentz
force term (M) in eq. (9). The typical lengthscale of the magnetic
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Figure 10. Contour plots for the non-magnetic simulation at Ra = 300 of
(a) Buoyancy (A) and (b) Coriolis (C) terms in the z-vorticity equation. The
plots are time-averaged and shown on a cylinder of radius s = 1.

Table 2. Summary of the dynamo runs performed, with lengthscale diag-
nostics. The parameters used in our models are E = 3 × 10−4, Pr = 1
and Pm = 5. Here Ra is the modified Rayleigh number, Rm is the mag-
netic Reynolds number, � is the Elsasser number derived from the saturated
magnetic energy in the model, �c is the typical lengthscale of a convection
roll, �E is the lengthscale at which energy is injected by buoyancy, �b is
the magnetic field lengthscale and �O and �V are the Ohmic and viscous
dissipation lengthscales.

Case Ra Rm � �c �E �b �O �V

1 200 152 2.31 0.431 0.345 0.432 0.219 0.284
2 300 196 2.35 0.378 0.295 0.341 0.182 0.251
3 630 305 2.33 0.332 0.261 0.235 0.132 0.225
4 810 353 2.36 0.334 0.258 0.210 0.123 0.220
5 990 394 2.50 0.336 0.256 0.200 0.119 0.217
6 1350 464 2.58 0.344 0.255 0.181 0.112 0.212

field, �b is obtained by from the magnetic energy spectrum, Em(l) by
the same procedure as in (12). Furthermore, the Ohmic dissipation
lengthscale, �O is obtained from the dissipation spectrum, Dm(l)
which is made up of the harmonic distribution of (∇ × B)2. Both lb

and lO decrease with increasing Rayleigh number (Table 2), which
suggests that, in the reversing dynamo the Lorentz force can be
forced to operate at the small scales where inertia also exists. Fig. 11
shows that the inertial term, I for both Ra = 300 and Ra = 990
has a small-scale, scrambled structure. The comparison with M
in Fig. 9(d) shows that M and I have comparable structures for
Ra = 990, whereas for the stable dipole at Ra = 300, the coherent,
banded structure of M has no obvious correlation with I.

We must note that our reversing regime at Ra = 990 is fun-
damentally different from the multipolar, low-Pr = Pm solution

Figure 11. Contour plots of the time-averaged non-linear Inertial (I) term in
the z-vorticity equation, shown on a cylinder of radius s = 1. The cases pre-
sented are (a) Ra = 300 (saturated dipole dynamo); (b) Ra = 990 (reversing
dynamo).

of Sreenivasan & Jones (2006): In their study, inertia was artifi-
cially boosted so as to disturb the MAC balance (and hence the
axial dipole), whereas in this study, inertia owes its existence to the
small-scale magnetic field in the reversing dynamo.

We conclude our discussion on lengthscales by noting that the
energy injection scale, �E is greater than the Ohmic dissipation
scale �O, implying a forward cascade of energy. However, viscous
dissipation is marginally (a factor of 2 at Ra = 990) higher than
Ohmic dissipation, and operates at a lengthscale, �V that is larger
than that of Ohmic dissipation, �O (Table 2). This is essentially a
consequence of the value of E and Pm used in the simulations, which
makes the lengthscale of the convection rolls, �c of the same order
of magnitude as, or even higher than, the magnetic field lengthscale,
�b. In the core, we expect (i) a small-scale velocity field to give rise
to a large-scale, mean magnetic field; and (ii) Ohmic dissipation
to be the dominant means of energy decay. To realize this regime
in a dynamo model, we require a separation of scales between
the velocity and magnetic fields, made possible by a low-magnetic
Prandtl number, Pm. Low-Pm dynamos require low E to operate, but
produce magnetic fields that are strongly dipolar unless the Rayleigh
number is set to a high value (Sreenivasan 2010); unfortunately, the
low-E–high-Ra regime is very expensive computationally.

4 C O N C LU S I O N

In a previous study, Sreenivasan & Jones (2011) showed via a linear
magnetoconvection model in the limit of E → 0 that a dipole mag-
netic field acting through the Lorentz force enhances helicity. The
non-linear calculations of Sreenivasan & Jones were focused on
the subcritical regime, wherein it was shown that a strong magnetic

 by guest on A
pril 19, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Polarity reversals of the geodynamo 1707

field generates helical fluid motion in regions that are otherwise
quiescent. This allows the operation of a strong-field dynamo at a
Rayleigh number lower than that required for a seed field to grow.
(Note, however, that the Rayleigh number is still above the critical
value for onset of non-magnetic convection.) In this study, we verify
the hypothesis of helicity generation by focusing on the dynamics
of columnar vortices that form in a rapidly rotating dynamo. It is
not clear whether helicity is important for magnetic field generation
in any class of non-linear dynamos, but at least in rapidly rotat-
ing flows where first-order smoothing (Moffatt 1978) is applicable,
helicity strongly affects dynamo action. Because of the dynamic,
self-generated magnetic field, dynamo simulations are in general
more difficult to interpret than linear magnetoconvection models;
nevertheless, the evolution of a dynamo from a seed field provides
the ideal test bed to look for changes in the flow that result from
an increase in the magnetic field strength. Owing to the transfer of
energy from the velocity to the magnetic field by the Lorentz force,
the total kinetic energy (and helicity) in the dynamo decreases as
the magnetic field grows, an effect not considered in the onset of
linear magnetoconvection. So the effect of the dipole field is visible
not in the total helicity, but in the difference between the helicity
tagged to positively and negatively signed vortices (cyclones and
anticyclones). The asymmetry in flow and vorticity brought about
by the magnetic field (Figs 4 and 5) are in phase, resulting in an
enhanced helicity in anticyclones relative to cyclones (Figs 6c and
d and Table 1). From Table 1, we note that the decrease in relative
helicity at high Rayleigh numbers is less dramatic than the increase
in relative helicity of the magnetic state over non-magnetic convec-
tion. That is, the erosion of field-induced helicity by buoyancy is
partial; therefore buoyancy does not push the dynamo back into a
kinematic state.

An important result that has come out of this study is the large
magnitude of the Lorentz force term (M) in the z-vorticity equa-
tion, in both dipole-dominated and reversing regimes (Figs 8b and
d). This emphasizes the need to look at columnar dynamics in
rapidly rotating dynamos. The Lorentz–Coriolis (M–C) force inter-
action in the z-vorticity equation is strong in the dipole-dominated
regime (Ra = 300) and weak in the reversing regime (Ra = 990),
which makes this equation an important starting point in the study
of reversals. From a theoretical/numerical standpoint, it is worth
investigating the saturation of the dipole component in the dynamo,
and then the additional forcing required to dislodge the dipole by
equilibrating the flows in cyclones and anticyclones. Through this
approach, it may be possible to place bounds on the Rayleigh num-
ber for polarity reversals in the core.

Another important issue is whether geomagnetic field reversals
are buoyancy-driven or inertia-driven. Our study strongly suggests
that it is buoyancy that overcomes the preference for dipolar solu-
tions by reducing flow asymmetries, and that non-linear inertia is
not a participant in this process. Any presence of non-linear inertia
in the small scales is likely to be a consequence of the small-scale
magnetic structure produced in the reversing regime.

There is a compelling analogy between the action of the dipole
magnetic field and the action of an equatorially symmetric CMB het-
erogeneity (Sreenivasan 2009). As both phenomena work through
the z-vorticity equation, they produce similar effects—a rise in z-
velocity, skewness in z-vorticity and consequent generation of helic-
ity. Increasing the Rayleigh number swamps the effects of the dipole
field (this study) as well as the CMB variations (Sreenivasan &
Gubbins 2008). As the Earth’s observed magnetic field is neither
a perfect dipole nor a boundary-locked solution, there is hope that

dynamo models can eventually place bounds on the Rayleigh num-
ber of the core.
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