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a b s t r a c t

Rotating dynamos controlled by laterally varying thermal conditions at the boundary are investigated
in this paper. A quasi-stationary, locked solution is obtained when the thermal winds produced by the
non-axisymmetric lateral variations come into an approximate balance with the Coriolis forces. This force
balance is verified numerically for both equatorially symmetric and antisymmetric boundary variations.
The introduction of lateral variations at the boundary can excite dynamo action in a weakly convective
regime that does not otherwise sustain a magnetic field with homogeneous boundary heating. A suffi-
ciently large lateral variation drives strong radial and axial fluid motions near the equatorial plane; these
flows in turn generate the helicity required for dynamo action. It is shown that a boundary-locked dynamo
operates in a state of equipartition between the velocity and magnetic fields. The departure from equipar-
tition in a partially locked dynamo allows the magnetic energy to be greater than the kinetic energy. As
the balance of forces in a locked dynamo is different from that in a convection-driven dynamo, lower-
mantle coupling could have a marked effect on the structure and dynamics of convection in the Earth’s
core.

© 2009 Elsevier B.V. All rights reserved.

1. Background

Rotating convection and dynamos with fluid-boundary coupling
have attracted considerable attention in recent years. The prob-
lem is of interest in geophysics where convection in the Earth’s
outer core is thought to be affected by lateral inhomogeneities
in the lower mantle. As the convective turn-over time in the
lower mantle is considerably larger than that in the underlying
molten core, these lateral variations constitute an approximately
static outer boundary condition that could organize core convec-
tion in a preferred pattern. Laboratory experiments on rotating,
nonmagnetic convection (Sumita and Olson, 1999) showed how
a multicolumnar, westward-drifting convection pattern gives way
to a locked downwelling front, when a section of the outer bound-
ary is cooled. Numerical studies of rotating convection indicated
that a lateral variation in heat flux at the boundary can lock a
flow that would otherwise drift (Zhang and Gubbins, 1993). Several
dynamo calculations with variable boundary heating (Sarson et al.,
1997; Glatzmaier et al., 1999; Olson and Christensen, 2002; Aubert
et al., 2007) have presented evidence for a correlation between
the magnetic field and boundary thermal anomalies, at least in a
time-averaged sense. Recent studies produced, for the first time,
dynamos where the magnetic field was nearly locked to lateral vari-
ations in heat flux defined by seismic tomography (Gubbins et al.,
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2007; Willis et al., 2007), enabling direct comparison of a model
magnetic field to the present-day geomagnetic field. Although the
solution was not stationary, the characteristic four main magnetic
flux lobes persisted for many diffusion times at the same sites as the
main lobes of the geomagnetic field. These high-latitude magnetic
flux concentrations are found to be relatively stationary during the
historical period (Bloxham and Gubbins, 1985; Jackson et al., 2000)
and appear to persist in the time-averaged paleomagnetic field
from the past few million years (Johnson and Constable, 1995).

The magnetohydrodynamic (MHD) regime that produces quasi-
stationary flux lobes in a dynamo model is significant in two
respects: First, it can give insights into the MHD regime that exists
in the Earth’s liquid iron core. Second, lower-mantle effects in the
Earth and in different dynamo simulations can be understood with
reference to a basic, locked solution. The present paper therefore
examines the dynamics of boundary thermal locking in a rotating
dynamo. It is shown that the balance of forces in a locked dynamo
is fundamentally different from that in a classical, convection-
driven dynamo with homogeneous boundary heating. The role of
lateral thermal variations in supporting dynamo action under weak
buoyancy-driven convection is also investigated for the first time
in a computational experiment.

This paper is organized as follows. In Section 2 the governing
equations and operating parameters in the model are presented. In
Section 3 the dynamics of the locked dynamo are investigated. This
includes the behaviour of the energies and lengthscales, the prin-
cipal force balances and the possible role of the lateral variations
in supporting dynamo action. Comparisons with classical dynamos
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with homogeneous boundary heating are made where appropri-
ate. Finally, in Section 4 the main results of this paper and their
implications for the Earth are discussed.

2. The dynamo model

2.1. Governing equations

We consider a thermal convection-driven dynamo where an
electrically conducting fluid is confined between two concentric,
co-rotating spherical surfaces. The radius ratio ri/ro is chosen to
be that in the Earth, 0.35. In the Boussinesq approximation, the
time-dependent, 3D MHD equations for the velocity u, the mag-
netic field B and the temperature T are solved numerically. The
governing dimensionless equations are

E

Pm

(
∂u
∂t

+ (∇ × u) × u

)
+ ẑ × u

= −∇p� + Ra q T r + (∇ × B) × B + E∇2u, (1)

∂B
∂t

= ∇ × (u × B) + ∇2B, (2)

∂T

∂t
+ (u · ∇)T = PmPr−1 ∇2T + Qs, (3)

∇ · u = ∇ · B = 0, (4)

where p� is an augmented fluid pressure that includes the irro-
tational part of the nonlinear inertial forces and Qs is a uniform
volumetric heat source/sink. The dimensionless groups in Eqs.
(1)–(3) are the Ekman number, E = �/2˝L2, the Prandtl num-
ber, Pr = �/�, the magnetic Prandtl number, Pm = �/� and the
‘modified’ Rayleigh number Ra, whose definition depends on the
basic state temperature profile and the thermal boundary condi-
tion in the problem. (The various cases considered in this paper
are described in Section 2.2.) In the above dimensionless groups,
� is the kinematic viscosity, � is the thermal diffusivity, � is the
magnetic diffusivity, L is the gap-width of the spherical shell and
˝ is the angular velocity of rotation. The Roberts number is given
by q = Pm Pr−1. The Ekman number is a measure of the rotation
rate and the Rayleigh number represents the strength of convective
buoyancy in the problem. As velocity is scaled by �/L, the volume-
averaged dimensionless velocity in the model directly gives the
magnetic Reynolds number, Rm. The standard numerical method
used here involves expanding T and the poloidal and toroidal com-
ponents of u and B in spherical harmonics and then timestepping
the spectral coefficients (Sreenivasan and Jones, 2006a). No-slip
boundary conditions are imposed on the flow. The inner core is

considered to be at a fixed temperature and electrically conduct-
ing. The outer boundary is maintained electrically insulating and
subject to a lateral variation in temperature or heat flux (see Sec-
tion 2.2). The variation at the outer boundary is proportional to the
spherical harmonic g(�, �) = Pm

l
(cos �) cos m�, where l and m are

chosen.

2.2. Basic heating modes and boundary variations

In Cases 1–4 of Table 1, convection is driven by the basic state
temperature profile T0(r) = ˇi(r2

i
− r2)/2, where ri is the inner

radius and ˇi is related to a uniform, dimensional heat source, Q ′
s

by ˇi = Q ′
s/3�. A Y2

2 harmonic variation in heat flux is imposed on
the outer boundary. The modified Rayleigh number for these cases
is given by Ra = g˛ˇiL

3/2˝�, where g is the gravitational acceler-
ation and ˛ is the coefficient of thermal expansion. The ratio of the
maximum (peak-to-peak) variation in heat flux to the mean heat
flux at the outer boundary gives the lateral inhomogeneity factor,
denoted by f.

In Cases 5 and 6 of Table 1, the basic state temperature distri-
bution is one of pure basal heating, T0(r) = ˇb/r, where ˇb = riro. A
lateral variation in temperature is imposed on the outer boundary.
The Rayleigh number for these cases is given by Ra = g˛	TL/2˝�,
where 	T is the basic state temperature difference across the layer.
The ratio of the maximum variation of temperature across the outer
boundary to the temperature difference across the layer gives the
inhomogeneity factor, f.

In Case 7, a temperature profile that represents a combination of
basal heating and intrinsic cooling is considered: T0(r) = −ˇir

2/2 +
ˇb/r, where ˇb = riro and ˇi = −0.25. A Y2

2 variation in temperature
is imposed on the outer boundary. The Rayleigh number is defined
based on the temperature drop across the layer from basal heating
alone, and the inhomogeneity factor has the same definition as in
Cases 5 and 6.

3. Results

3.1. Flow structures, energies and lengthscales

We begin the study with Cases 1–4 in Table 1 where a Y2
2 vari-

ation in heat flux is applied at the outer boundary. The Ekman
number is fixed at E = 10−4, for which the onset of thermal con-
vection occurs at Rac ≈ 22.8, where Rac is the critical Rayleigh
number. The Rayleigh number is fixed at a marginally supercrit-
ical value (Ra ≈ 1.5Rac). Since the convective Rayleigh number is
small, the ratio of thermal to magnetic diffusivities, q is set to 10
for possible magnetic field generation. For a lateral inhomogeneity
factor f ≤ 0.6, a multicolumnar flow is present as shown in Fig. 1(a);

Table 1
Summary of the calculations studied in this paper. Here f is the inhomogeneity ratio, 
max is the highest spherical harmonic degree and Nr is the number of radial grid points
used in the computation. Where dynamo action is absent, the volume-averaged root mean square value of the velocity is given in place of the magnetic Reynolds number,
Rm . The boundary inhomogeneity is in heat flux for Cases 1–4 and in temperature for Cases 5–7. Convection is produced by internal heating in Cases 1–4, by basal heating in
5 and 6 and by a combination of basal heating and internal cooling in 7. Runs 8 and 9 are dynamos with pure basal heating and a homogeneous (constant temperature) outer
boundary condition.

Case Ym
l

f Ra/Rac Pr q E 
max Nr Rm (〈u〉rms) Dynamo?

1 Y2
2 0.6 1.5 1 10 1 × 10−4 37 60 128.2 No

2 Y2
2 0.9 1.5 1 10 1 × 10−4 37 60 177.2 Yes

3 Y2
2 1.6 1.5 1 10 1 × 10−4 37 60 212.8 Yes

4 Y2
2 2.4 1.5 1 10 1 × 10−4 37 60 240.0 No

5 Y8
8 0.5 2.3 1 8 5 × 10−5 64 60 128.4 Yes

6 Y4
5 1.0 1.5 1 16 5 × 10−5 64 60 180.6 Yes

7 Y2
2 2.5 15 5 1 5 × 10−5 64 60 213.0 Yes

8 – – 8 10 1 5 × 10−5 84 96 128.3 Yes
9 – – 5 1 1 5 × 10−6 128 128 122.0 Yes
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Fig. 1. Equatorial section plots of the radial fluid velocity, ur for a Y2
2 heat flux inhomogeneity at the boundary. The three cases studied are (a) f = 0.6, (b) f = 1.6 and (c)

f = 2.4. The model parameters are kept fixed for all three cases (Ra = 1.5Rac , E = 10−4, Pr = 1 and q = 10.) The dimensionless maximum and minimum values for the three
cases are [−284.8, 200], [−654.6, 281.6] and [−215.06, 103.2]. Positive values of ur are shown in red and negative values are in blue. Dynamo action is obtained only in (b).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

Fig. 2. Kinetic and magnetic energies, Ek and Em , shown in blue and red curves
respectively, over one-fourth of a magnetic diffusion time. Curves (i) and (ii) are for
f = 0.9 and curves (iii) and (iv) for f = 1.6. The model parameters are Ra = 1.5Rac ,
E = 10−4, Pr = 1 and q = 10 (Cases 2 and 3 in Table 1). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of the article.)

however, there is no dynamo action. Fig. 2 shows the kinetic and
magnetic energies, given by

Ek = 1
2

∫
u2 dV ; Em = Pm

2E

∫
B2 dV. (5)

For f = 0.9 dynamo action is produced with the magnetic energy
being greater than the kinetic energy. As f is increased to 1.6,
the amplitude of oscillations in the energy is reduced. The kinetic
and magnetic energies are found to be approximately equal (see
Fig. 2 and also Table 2). The dominant structure of the flow for

0.9 < f < 1.6 consists of two static downwellings near � = ±�/2,
as shown in Figs. 1(b) and 3(a). These strong, narrow downwellings
are produced by the azimuthal inhomogeneity in absolute temper-
ature, i.e. the sum of the mean temperature and the lateral variation.
For Case 3 in Table 1 (f = 1.6) the absolute equatorial temperatures
on r = ro (measured relative to the fixed temperature on r = ri) at
� = [0, �/2] are [−0.18, −1.18]. In Case 7 a Y2

2 variation in tem-
perature is applied on the outer boundary. The respective absolute
temperatures for this case are [0.449, −1.95]. The narrow down-
wellings in Fig. 3(a) concentrate the radial magnetic flux in four
distinct lobes that are symmetric with respect to the equator, as
shown in Fig. 3(b).

Now, the azimuthal lengthscales of the velocity and magnetic
field, lu and lB, may be estimated from a weighted average of the
respective wavenumbers, m, as follows:

mu =
∑

m〈u2
m〉∫

u2dV
; mB =

∑
m〈B2

m〉∫
B2dV

, (6)

where the angled brackets represent time averages and the sum is
over all m. The lengthscales lu and lB are given by 2�/mu and 2�/mB.
An alternative, ‘dissipative’ lengthscale for u and B is also defined
based on the ratio of kinetic energy to viscous dissipation and the
ratio of magnetic energy to Ohmic dissipation. The ratio of lB to
lu in the runs, obtained from (6), is given in Table 2 and the ratio
of dissipative lengthscales is given in brackets. It is evident that
the lengthscales of u and B are approximately equal in the locked
regime. Indeed, we find from Fig. 4(a) that the spectra of kinetic and
magnetic energies have identical peaks at the boundary-imposed
wavenumber m = 2 and its large-scale multiples. The congruence
between the lengthscales of u and B may further be verified from a
contour plot of the radial magnetic field near the equator, which
has a structure similar to that of the radial velocity shown in
Fig. 1(b). The approximate equivalence of the lengthscales lu and

Table 2
A summary of the diagnostics investigated for the dynamos in Table 1. Here Ek and Em are the global kinetic and magnetic energy densities given by (5), WV is the viscous
dissipation given by Pm

∫
(∇ × u)2dV , WR is the Ohmic (resistive) dissipation given by (Pm/E)

∫
(∇ × B)2dV , lu and lB are the lengthscales of the velocity and magnetic fields

and Ro
 is the local Rossby number. The inertial forces are given by (E/Pm)〈(∇ × u) × u〉, Coriolis forces by 〈ẑ × u〉 and the Lorentz forces by 〈(∇ × B) × B〉, where the angled
brackets represent rms values.

Case Em/Ek WV /WR lB/lu Inertia
Coriolis Ro


Inertia
Lorentz

〈∇×B〉rms
〈u×B〉rms

2 3.675 2.89 1.01 (1.031) 0.049 4.45 × 10−3 0.21 0.177
3 1.351 7.45 0.85 (1.003) 0.07 5.96 × 10−3 0.746 0.145
5 0.908 14.6 1.46 (1.287) 0.018 3.19 × 10−3 1.307 0.235
6 0.99 24.67 1.24 (1.235) 0.011 1.82 × 10−3 0.785 0.145
7 3.56 1.98 1.56 (1.327) 0.117 10.4 × 10−3 0.543 0.143

8 25.36 0.885 2.14 (1.51) 0.02 3.26 × 10−3 0.06 0.191
9 6.79 0.60 2.84 (2.016) 0.02 4.82 × 10−3 0.02 0.251
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Fig. 3. (a)–(c) Spherical surface plots with longitude � in the range [−�, �] from left to right on the horizontal axis and colatitude � in the range [0, �] from top to bottom on
the vertical axis. (a) ur (r = 0.8ro) with surface flow arrows superposed; (b) Br (r = ro); (c) u�(r = 0.8ro), all for a Y2

2 heat flux variation at f = 1.6. Positive values are shown in
red and negative values in blue. (d) Global kinetic helicity for f = 0.9 and f = 1.6. The model parameters are Ra = 1.5Rac , E = 10−4, Pr = 1 and q = 10. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of the article.)

lB and the energies Ek and Em in (5) indicates an equipartition
state.

Increasing the inhomogeneity factor, f to > 1.6 causes the
magnetic field to weaken considerably, and when f ≈ 2 the field
decays rapidly to zero. For f = 2.4 (see Fig. 1(c) and Case 4, Table 1)
strong azimuthal flows are produced by the lateral variation,
causing the downwellings to be distorted from a radial into a
spiral structure, similar to that observed at large f in a laboratory
experiment of thermal convection (Sumita and Olson, 1999).
Although the precise numerical value of f that results in dynamo
failure would depend on the parameters chosen in the model, the
above result is significant: where the applied inhomogeneity is
either too small or too big, the dynamo fails. From Table 1 we note
that the volume-averaged root mean square value of the velocity
in the model, 〈u〉rms (which gives the magnetic Reynolds number

for a dynamo calculation) increases as f is increased from 0.6 to
2.4 and all other parameters are kept fixed. Yet, dynamo action is
lost at f ∼2. We note from Fig. 1(b) and (c) that the transformation
from a radial to spiral structure as f is increased is accompanied by
a significant decrease in fluid velocity within the downwelling. As
we shall see in Section 3.3, the axial (z) velocity at f = 2.4 is also
significantly lower than that at f = 1.6. This suggests that dynamo
action is determined by the magnitude of the velocity within the
fluid rolls, rather than the rms value of the velocity.

3.2. Force balances in locking

The spherical surface plot of the azimuthal velocity, u� for f =
1.6 (Fig. 3(c); Case 3 in Tables 1 and 2) may be understood from the
temperature distribution imposed by the Y2

2 boundary variation.

Fig. 4. Spectra of the kinetic and magnetic energies, shown in blue and red curves respectively, as a function of the azimuthal wavenumber, m. (a) Y2
2 heat flux inhomogeneity

(Case 3, Table 1). (b) Y8
8 temperature inhomogeneity (Case 5, Table 1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of the article.)
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At � = ±�/2, ∂T/∂� is negative in the northern hemisphere, and
u� changes sign from positive (cyclonic) near the equatorial plane
to negative (anticyclonic) at high latitudes. The opposite effect is
seen beneath warm regions, � = 0, �. An similar pattern of u� is
obtained at every radius of the spherical shell except near the inner
boundary (r = ri), indicating that the boundary thermal variation
has penetrated the fluid down to the inner boundary. For f = 1.6
the equatorial symmetry of the boundary condition is mapped on to
the velocity field. The symmetry of the locked state forces the net
kinetic helicity of the dynamo, H =

∫
u · (∇ × u)dV to decrease by 8

orders of magnitude from its value at f = 0.9, as shown in Fig. 3(d).
This suggests that, while the equatorial symmetry of the dynamo
solution at f = 0.9 is approximate, the symmetry at f = 1.6 is exact.
(In near-complete locking, the helicities in the two hemispheres
are approximately equal in magnitude and of opposite sign.) As the
boundary condition appears to control the flow structure in Fig. 3,
we first examine the validity of the following thermal wind-type
balance in the curl of the momentum equation:

∂u
∂z

= −Ra q ∇ × (Tr), (7)

where the temperature gradients are dominated by the non-
axisymmetric lateral variations at the boundary, rather than free
convection. In Fig. 5 the �-components of the forces in (7) are plot-
ted at longitude � = �/2. For f = 1.6 the velocity gradient ∂u�/∂z
follows the local thermal wind Ra q (1/r) ∂T/∂�, and the two forces
are of the same order of magnitude except in the Ekman layer at
the upper boundary where ∂u�/∂z is one order of magnitude higher
than that in the interior. (The Ekman layer region could not be
shown in the same plot because of this large difference in mag-
nitude.) For a weaker inhomogeneity (f = 0.6) the thermal wind
term is markedly smaller; see Fig. 5(b). The steep gradient ∂T/∂�
produced by the Y2

2 variation for f = 1.6 is absent for f = 0.6.
The �-component of (7) in spherical polar coordinates relates

the latitudinal velocity, u� to the azimuthal gradient in boundary
temperature:

∂u�

∂z
= − Ra q

sin �

∂T

∂�
. (8)

For an equatorially symmetric Y2
2 variation, a positive ∂T/∂� should

be correlated to a negative u� above the equatorial plane (z > 0).
This prediction is confirmed in plots of ∂T/∂� and u� versus longi-
tude �, shown in Fig. 6(a) for Case 3 in Table 1. The dotted vertical
line in this figure gives the longitude at which temperature is min-
imum. The profiles of u� and ∂T/∂� are subject to a small, finite
eastward shift from � = �/2 as seen in Fig. 6(a). This azimuthal
shift shows up in plots of the radial velocity at a horizontal section
near the equator [e.g. Fig. 1(b)]. The correlation between u� and
∂T/∂� is strongly evident for a Y2

2 variation in temperature (Case 7
in Tables 1 and 2). Here ∂T/∂� has a smooth sin 2� variation at the
outer boundary, but its profile is transformed into a spiked structure
by the profile of u� beneath the boundary [Fig. 6(b)].

Table 2 summarizes the relative magnitudes of three forces in
the momentum equation. We have a rotationally dominant regime
in all calculations as the nonlinear inertial forces are small in com-
parison with the Coriolis forces. This is also confirmed by the small
value of the local Rossby number, Ro
 (Christensen and Aubert,
2006; Olson and Christensen, 2006) defined based on a character-
istic lengthscale of the flow. (Here the lengthscale is derived from a
typical spherical harmonic degree, 
u obtained as a weighted aver-
age from the kinetic energy spectrum). Inertia does play a role in the
momentum equation as thermal locking results in an approximate
balance between the nonlinear inertial and Lorentz forces:

E

Pm
(∇ × u) × u ≈ (∇ × B) × B, (9)

Fig. 5. Meridional plots at azimuthal angle � = �/2 of Ra q (1/r)∂T/∂� (left panel)
and ∂u�/∂z (right panel). Two cases are presented for the Y2

2 heat flux variation: (a)
f = 1.6 with peak values of the two forces being [±478.1, ±542.8]; (b) f = 0.6 with
peak values [±55.5, ±218.9]. The fixed model parameters are Ra = 1.5Rac , E = 10−4,
Pr = 1 and q = 10. Positive values are shown in red and negative values in blue. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of the article.)

which admits the equipartition solution (see Chandrasekhar, 1961,
p. 157). The equivalence of the kinetic and magnetic energies in
(5) and that of the lengthscales lu and lB are consistent with (9).
Note that the inertial term increases from 20% to 75% of the Lorentz
force term as f is increased from 0.9 to 1.6 for the Y2

2 variation
(compare Cases 2 and 3, Table 2). This result indicates that the bal-
ance in (9) is enforced in the locked dynamo regime. The global
inertia-Lorentz force balance also holds for the locked solutions
subject to Y8

8 and Y4
5 variations in temperature at the outer bound-

ary (see Cases 5 and 6, Table 2). The above force balance is absent
in convective dynamos with thermally homogeneous boundaries
that produce stable, dipolar magnetic fields – for Cases 8 and 9
the inertial forces are much weaker than the Lorentz forces. These
dynamos operate in an approximate balance between the magnetic,
Archimedean (buoyancy) and Coriolis forces, or the MAC balance
(also see Sreenivasan and Jones, 2006a). The magnetic energy for
these dynamos is typically higher than the kinetic energy, and the
lengthscale of the magnetic field is larger than that of the velocity
field. The main differences between boundary-locked dynamos and
convection-driven, dipolar dynamos are summarized in Table 3.
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Fig. 6. (a) Dynamo with an imposed Y2
2 variation in heat flux (Case 3, Table 1) is considered. Latitudinal velocity, u� at a horizontal section z = 0.15 above the equator and on

the spherical surface r = 0.9ro (black line) and ∂T/∂� at r = ro (red line) are shown in the range 0 < � < �. (b) Dynamo with an imposed Y2
2 variation in temperature (Case

7). Profiles of ∂T/∂� are shown at r = ro (dashed line) and r = 0.9ro (solid line). The dotted vertical lines in the two plots correspond to the longitude where T is minimum at
the outer boundary.

To test whether strong thermal coupling can be achieved in a
regime of large Ra and q∼1, a basic state temperature profile incor-
porating basal heating and uniform intrinsic cooling is considered
in Case 7. (The basic state for this case is given in Section 2.2). Here,
thermal convection is weakened as we move from the inner to the
outer boundary, allowing the imposed Y2

2 temperature variation to
penetrate into the fluid. Locking is not as rigid as in Case 3, but
persistent downwellings similar to those in Figs. 1(b) and 3(c) are
recovered. The velocity and magnetic field structures for this case
are given in Fig. 5 of a recent paper by the author (Sreenivasan and
Gubbins, 2008). While the flow is dominated by the two down-
wellings, convection rolls tend to migrate towards � = ±�/2 and
clump together near these longitudes. The formation of roll clus-
ters indicates that free convection is not negligible in the thermal
wind. The wavenumber of free convection therefore appears in the
solution with the wavenumber of the imposed lateral variation.
(Also see the discussion on low Ekman numbers in Section 4.) From
Table 2 we note that the solution in Case 7 departs from equiparti-
tion as the ratio of inertial to Lorentz forces is 0.543. Nevertheless,
this ratio is much higher than that for a dynamo with homogeneous
boundary heating (Case 8).

Table 2 also gives the relative magnitudes of the inductive and
diffusive terms in the ‘uncurled’ induction equation. We find that
(∇ × B) is systematically smaller than (u × B) in the locked solution,
as found for dynamos with homogeneous boundaries (Cases 8 and
9).

3.3. The role of boundary thermal anomalies in dynamo action

To focus on the role of the boundary thermal inhomogeneity in
dynamo action, a computational experiment is performed with the
equatorially symmetric Y2

2 boundary heating condition. The calcu-
lation begins with the locked state at f = 1.6 (see Fig. 7). At time
td = 1, the magnitude of the lateral inhomogeneity is reduced to
f = 0.6, following which the magnetic energy, Em falls by three
orders of magnitude over one diffusion time. If left to evolve freely,

the magnetic field would decay to zero in this phase. However, by
setting f = 1.3 at td = 2 and keeping all other parameters the same
as before, Em increases rapidly from its low value and stabilizes at
a value comparable to that at td = 0. The eventual structure of the
flow is identical to that in Fig. 1(b), and the locked regime is sim-
ilar to the one reported in Case 3, Table 1. If the inhomogeneity
factor, f is set to 1.6 at td = 2 [see the dashed curve in Fig. 7(a)],
rigid locking is not obtained and Em saturates at a lower value than
at td = 0. Although the precise value of f at which near-locking is
realized is subject to hysteresis, the two locked states obtained in
this simulation produce the same energies and lengthscales. It is
evident from Fig. 7 that the thermal inhomogeneity at the bound-
ary acts like a “switch” for dynamo action. The inhomogeneity acts
on the flow by changing both the axial velocity and vorticity dis-
tributions. A sufficiently large lateral variation drives strong axial
fluid motions: on azimuthal average, the axial kinetic energy at
f = 1.6 is concentrated in regions near the equatorial plane which
are shown magnified in Fig. 8(a). For too small and too large lateral
variations (f = 0.6 and f = 2.4) the axial energy is distinctly weak.
The above effects are reflected in the axial kinetic helicity plotted
in Fig. 8(b). While the strong helicity produced for f = 1.6 is consis-
tent with dynamo action for this case, the weak helical motions for
f = 0.6 and f = 2.4 do not support dynamo action. The injection of
axial energy (and helicity) by the lateral variation is also observed
in a nonmagnetic calculation at f = 1.6, which indicates that the
dynamo magnetic field is mainly supported by boundary-induced
helicity. The back-reaction of the magnetic field on the velocity field
is small. The effect of the lateral variation on the sign of vortic-
ity is evident from the behaviour of the axial vorticity skewness,

S =
∫

ω3
z dV/[

∫
ω2

z dV ]
3/2

, a diagnostic commonly used in rotating
turbulence (Bartello et al., 1994). The value of S in Fig. 7(b) sug-
gests that anticyclonic (negative) vorticity is dominant for f = 1.6,
while cyclones and anticyclones are of comparable strength for
f = 0.6. The source of the preferred negative vorticity for f = 1.6 is
the Ekman layer at the upper boundary where viscous diffusion of
vorticity is fed by the strong axial gradient in velocity. Since anticy-

Table 3
A comparative study of (a) locked dynamos controlled by inhomogeneous boundary heating and (b) convection-driven dynamos producing stable, dipolar magnetic fields

Property Boundary-locked Convection-driven

(i) Time dependence Quasi-steady ( ∂
∂t

≈ 0) In general, time-varying
(ii) Primary force balance Boundary-driven thermal wind balance MAC balance (e.g. Sreenivasan and Jones, 2006a)
(iii) Ratio of nonlinear inertia to Coriolis forces 
 1 
 1
(iv) Ratio of nonlinear inertia to Lorentz forces ≈ 1 
 1
(v) Energies Em ≈ Ek Em > Ek

(vi) Lengthscales lB ≈ lu lB > lu
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Fig. 7. (a) Variation of the magnetic energy, Em with magnetic diffusion time. At td = 1, the inhomogeneity factor, f is switched from its initial value of 1.6 to 0.6. At td = 2, f
is set to 1.3 (solid curve) and 1.6 (dotted curve) in two separate runs. (b) The corresponding variation of the axial vorticity skewness, S. The model parameters are kept fixed
at Ra = 1.5Rac , E = 10−4, Pr = 1 and q = 10.

clonic z-vorticity is strongly correlated to magnetic field generation
in Fig. 7, the vorticity skewness could be a useful flow diagnostic
for the onset of dynamo action.

3.4. Different patterns of boundary inhomogeneity

In Cases 5 and 6 of Tables 1 and 2, thermal convection is
produced solely by basal heating (see Section 2.2). In Case 5

Fig. 8. (a) Meridional contour plots of the axial kinetic energy density, 1
2 〈u2

z 〉, where
the angled brackets indicate averages over both azimuthal angle, � and time. The
region near the inner boundary on either side of the equatorial plane is shown in
focus for clarity. The cases presented (from left to right) are f = 0.6, f = 1.6 and
f = 2.4 for the Y2

2 heat flux inhomogeneity. The maximum values of energy for the
three cases are 1.3, 19.5 and 2.75 respectively. (b) Contour plots of the axial helicity,
〈uzωz〉. The helicity values in either hemisphere are ±23.9 (f = 0.6); ±218.3 (f =
1.6);±64.8 (f = 2.4). Positive values are shown in red and negative values are in blue.
The model parameters are kept fixed at Ra = 1.5Rac , E = 10−4, Pr = 1 and q = 10. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of the article.)

(Y8
8 boundary variation) dynamo action is lost for f < 0.5. The

kinetic and magnetic energy spectra have coinciding peaks at the
wavenumber m = 8 and its harmonic multiples [Fig. 4(b)], consis-
tent with the approximate equivalence of lengthscales of u and
B reported in Table 2. In Case 6 the initial state has an equatori-
ally symmetric velocity field and a weak dipolar magnetic field.
The equatorially antisymmetric Y4

5 boundary condition produces
a velocity field that locks the magnetic flux lobes beneath cold
regions at the boundary, which do not lie at the same longitude in
the two hemispheres; see Fig. 9(a) and (b). As the imposed temper-
ature pattern is equatorially antisymmetric, both ∂T/∂� and ∂u�/∂z
have equatorially symmetric distributions at � = �/2 [Fig. 9(c)]. It
is also confirmed that the magnitudes of the forces in the ther-
mal wind balance (7) are comparable in the interior of the flow. In
Fig. 9(d) the magnetic energy increases continuously over 5 diffu-
sion times and saturates to within 1% of the kinetic energy, whose
variation is small during the calculation. In addition, we note from
Table 2 that the lengthscales of u and B are approximately equal. In
short, the main force balances and the equipartition solution hold
regardless of the equatorial symmetry of the applied inhomogene-
ity.

4. Discussion

In this paper we have looked at the dynamics of boundary-
locked dynamos. A quasi-stationary, locked solution is obtained
when the thermal winds driven by lateral variations at the bound-
ary are in approximate balance with the Coriolis forces in the fluid.
The dimensional force balance in the curl of the momentum equa-
tion is given by

2˝
∂u
∂z

= −g˛ ∇ × (Tr), (10)

which has the same form as the classical thermal wind equa-
tion for rotating thermal convection in a Boussinesq fluid (e.g.
Sreenivasan and Jones, 2006b), except that the temperature gradi-
ents are prescribed by non-axisymmetric (e.g. Y2

2 ) lateral variations.
This regime can be simulated numerically in a low-Ra model where
thermal winds produced by buoyancy-driven convection are small.
Eq. (10) is significant in that it allows fluid motion of any wavenum-
ber to be produced by a prescribed temperature variation at the
boundary. Previous studies had suggested that locking occurs when
the wavenumber of convection is similar to the wavenumber of
the boundary anomalies (Zhang and Gubbins, 1993); and that a
small-scale flow could be converted to a large-scale flow by a self-
generated magnetic field to make locking possible (Willis et al.,
2007). Clearly, neither the matching of wavenumbers nor the pres-
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Fig. 9. (a) Spherical surface plot at r = ro of the applied Y4
5 temperature variation (Case 6, Tables 1 and 2). The longitude � is in the range [−�, �] from left to right on

the horizontal axis and colatitude � is in the range [0, �] from top to bottom on the vertical axis. Solid lines show positive values and dashed lines show negative values.
(b) The locked radial magnetic field distribution at the outer radius. (c) Meridional plots at � = �/2 of Ra q (1/r)∂T/∂� (left panel) with minimum and maximum values
[−884.4, 471.1]; ∂u�/∂z (right panel) with minimum and maximum values [−701.1, 473.0]. Positive values are shown in red and negative values in blue. (d) Evolution of
the kinetic energy (solid line) and magnetic energy (dashed line) with magnetic diffusion time. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of the article.)

ence of a magnetic field is required for locking produced by the
balance in (10).

The secondary force balance in a locked dynamo is between
the nonlinear inertial and Lorentz forces, realized approximately
in all locked solutions in this paper but generally absent in
buoyancy-driven dynamos with homogeneous boundary heating.
The inertia-Lorentz force balance is a consequence of locking pro-
duced via Eq. (10). By virtue of this balance, the locked dynamo
operates in a state of equipartition between the velocity and mag-
netic fields. The equivalence of scaled u and B fields has been
obtained in several astrophysical dynamo models; e.g. Dorch and
Archontis (2004) and Mininni et al. (2005). These models differ from
the present model in two respects: they are non-rotating; and they
incorporate a forcing term in the momentum equation that corre-
sponds to a prescribed, globally non-helical, initial velocity field.
The analogy between the locked model and the astrophysical mod-
els is apparent if we note that the thermal forcing at the boundary
acts to create a u field, which then brings the B field into equiparti-
tion. If Ek ≈ Em and lu ≈ lB, the ratio of viscous to Ohmic (resistive)
dissipation rates may be shown to be of order WV /WR∼�/� = Pm
(see Table 2 for comparison). As Pm = qPr∼10 in the locked model,
Ohmic dissipation is approximately one order of magnitude smaller
than viscous dissipation.

The introduction of lateral variations at the boundary can
excite dynamo action for a given Ra–q combination that does
not otherwise produce a dynamo with homogeneous boundary
heating. While this effect was previously noted in Willis et al.
(2007), here we have looked at the role of lateral variations
in supporting dynamo action. As shown in Figs. 1 and 8, the
variations drive strong radial and axial motions which, in turn,

produce the helicity required for amplification of a seed magnetic
field.

A locked dynamo driven by lateral variations at the bound-
ary cannot be applied directly to the Earth for two reasons: the
geomagnetic field is not rigidly locked to lower-mantle inhomo-
geneities; and the Earth’s dynamo is thought to be powered by
thermal and compositional buoyancy in its fluid core. Nevertheless,
the locked model provides a useful starting point in understanding
core–mantle interaction in Earth-like conditions. How is lock-
ing affected by a high convective Rayleigh number and a low
Ekman number? If the buoyancy-driven temperature gradients are
stronger than the boundary-driven gradients, the velocity field is
“decoupled” from the boundary inhomogeneity and free to drift
azimuthally. In other words, the thermal wind term in Eq. (10) must
contain a dominant non-axisymmetric, boundary-driven compo-
nent to lock the velocity field. This would explain why a weakly
convective parameter regime is crucial for obtaining a boundary-
locked solution.

For Ekman numbers lower than the ones used in this study,
locking becomes progressively difficult. Since the critical Rayleigh
number for onset of nonmagnetic convection increases with
decreasing Ekman number (Rac∼E−1/3), even a marginally super-
critical convective state would generate strong thermal winds that
compete with the boundary-driven thermal winds in balancing the
Coriolis forces. A preliminary exploration into low Ekman numbers
suggests that the flow structure is different from that at higher
Ekman numbers: for a sufficiently large Y2

2 variation in tempera-
ture, the flow at E = 10−5 is organized in clusters of small-scale
rolls near � = ±�/2, rather than isolated downwellings. For the
higher Ekman numbers investigated in this paper, fluid motion is
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organized into two isolated downwellings as shown in Fig. 1(b).
The above difference between high and low-Ekman number flows
can be understood as follows. As the contribution of free convec-
tion to the thermal wind can be kept small in high-E simulations,
the convective wavenumber is totally suppressed by the bound-
ary wavenumber in the locked solution. On the other hand, as
free convection becomes significant in the thermal wind in low-E
simulations, the convective wavenumber will show up in the solu-
tion in addition to the boundary wavenumber. In short, numerical
models with relatively large Ekman numbers are needed to demon-
strate the validity of the boundary-driven force balance in (10). A
systematic study of low-Ekman number dynamos influenced by
lateral variations should be possible when faster computers are
available.

The calculation in Case 7 produces a partially locked solu-
tion even when free convection is not small. This is achieved
by suppressing convection in the outer regions through a vol-
umetric heat sink so that boundary-driven thermal winds are
allowed to balance the Coriolis forces. [The thermodynamic impli-
cations of a heat sink in a model of Boussinesq convection are
discussed in Sreenivasan and Gubbins (2008).] The above regime
could be relevant to the Earth’s dynamo because the departure
from equipartition does allow the magnetic energy, Em to be greater
than the kinetic energy, Ek. A comparison of the dynamo in Case
7 with a purely convective, dipolar dynamo suggests that man-
tle coupling could increase the magnitude of inertial forces in the
fluid core. Note, however, that the inertial forces must be much
smaller than the Coriolis forces for the Rossby number in the core
to be ∼10−6.

Finally, while the results in this paper are valid for individ-
ual equatorially symmetric and antisymmetric boundary heating
modes, the effect of complex combinations of these modes on
the dynamo needs to be investigated. Such a study would give
an insight into the effects of the tomographic boundary condition
(Masters et al., 1996) constructed based on the Earth’s lower-
mantle shear wave velocity variation.
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