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The confined evolution of a buoyant blob of fluid subject to a vertical magnetic field is investigated in the
limit of low magnetic Reynolds number. When the applied magnetic field is strong, the rise velocity of the
blob is small. As the vorticity diffuses along the magnetic field lines, a quasi-steady state characterised
by a balance between the work done by buoyancy and Ohmic dissipation is eventually reached at time
tqs ∼ (L2/δ2)τ , where L is the axial dimension of the fluid domain, δ is the radius of the buoyant blob
and τ is the magnetic damping time. However, when the applied magnetic field is weak or the axial
length is sufficiently large compared to the blob size, the growth of axial velocity eventually makes the
advection of vorticity significant. The typical time for the attainment of this nonlinear phase is tnl ∼
N2/3

0 τ , where N0 is the magnetic interaction parameter at time t = τ . The order-of-magnitude estimates
for the timescales tqs and tnl are verified by computational experiments that capture both the linear and
nonlinear phases.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In liquid metal magnetohydrodynamics (MHD), magnetic fields
are used to suppress motions in an electrically conducting fluid.
Common examples of this effect are the role of a static magnetic
field in the delayed onset of Rayleigh–Bénard convection in a fluid
heated from below [1] and the damping of free-surface waves by
a vertical magnetic field [2,3]. As fluid flows are typically made
up of an ensemble of localized eddies or buoyant plumes, several
previous studies focussed on these flow structures and thereby ob-
tained considerable insight into the behaviour of large scale flows.
The spatio-temporal evolution of isolated vortices subject to static
magnetic fields has been studied extensively in [4–6]. Axisym-
metric buoyant fluid blobs in a quiescent fluid were investigated
for the occurrence (or absence) of finite-time singularities in the
“vortex sheets” that form at their fronts [7,8]. The presence of
a strong, ambient magnetic field affects the evolution of a blob
by inhibiting the formation of this vortex sheet [9]. In an infinite
domain, however, the magnetic field does not affect the vertical
momentum of the blob, which increases linearly with time. The
evolution of buoyant blobs in a liquid metal may have implica-
tions for the Earth’s dynamo. Isolated blobs of material are thought
to be released from the mushy zone near the Earth’s inner core
boundary, each blob driving a Taylor column [10]. The dynamics of
such buoyant parcels under the combined influence of a toroidal
magnetic field and background rotation have been analysed in a
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geophysical context [11]. In this Letter I look at buoyant blobs in
a confined fluid, where the dynamics are controlled by both the
strength of the ambient magnetic field and the size of the domain.
Under a strong magnetic field, the evolution is linear, in the sense
that the diffusion of vorticity along the magnetic field lines dom-
inates over nonlinear advection. Eventually, a quasi-steady state,
produced by a balance between the work done by buoyancy and
Ohmic dissipation of the flow, is reached. On the other hand, if
the magnetic field is weak or the fluid domain is large, the above
linear phase is followed by a phase wherein nonlinear advection
becomes significant. The timescale for this linear–nonlinear transi-
tion is estimated from an order-of-magnitude analysis and verified
independently by numerical simulations.

This Letter is organized as follows. In Section 2, the governing
equations for the problem and their interpretation are presented.
In Section 3, the model problem is described and the timescales
of occurrence of the quasi-steady and nonlinear phases are de-
rived. Comparisons with the infinite-domain problem and previous
analogous studies on MHD vortices are made where appropriate.
Section 4 is devoted to a computational study of a buoyant blob in
a cavity and comparison of the results with the estimates obtained
in Section 3. The main results are summarized in Section 5.

2. Governing equations

We consider the evolution of a localized density disturbance in
an inviscid, incompressible, Boussinesq fluid. The fluid has a den-
sity perturbation δρ , which is essentially δρ = −ραT , where α is
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Fig. 1. (a) A hot fluid blob of maximum temperature T0 sits in a vertical mag-
netic field, B. The radial temperature gradients generate the poloidal velocity field
u which, in turn, is damped by the magnetic field. (b) The model problem of a blob
of radius δ in a confined domain of height L and radius R . Only one half of the
domain is shown.

the coefficient of thermal expansion (K−1) and T is the temper-
ature relative to the value at infinity, associated with the density
variation. The fluid is penetrated by a vertical, uniform magnetic
field, Bêz . The magnetic Reynolds number [12], defined as the ratio
of the magnetic diffusion time, l2/η, to the eddy turn-over time,
l/u, is small. (Here l and u are typical length and velocity scales
and η is the magnetic diffusivity.) The condition

Rm = ul

η
� 1

is usually satisfied in laboratory hydromagnetics. In the Earth’s
liquid iron outer core of size l = 2200 km, Rm is of order 102. How-
ever, isolated vortex “blobs” of l ∼ 6 km would still have Rm ∼ 1, if
we assume u = 3 × 10−4 m s−1 and η = 2 m2 s−1. The assumption
of low Rm is useful in vortex dynamics because the back-reaction
of the velocity field on the magnetic field can be neglected. In
other words, the locally induced magnetic field is small relative
to the global, ambient field.

The initial configuration of the buoyant blob is shown in
Fig. 1(a). The blob has a maximum temperature T0 at its cen-
tre. We restrict our analysis to axisymmetric motion in cylindrical
polar coordinates (r, θ, z), with the gravitational acceleration g
aligned with the z-direction. The temperature distribution creates
a poloidal velocity field u that causes the blob to rise against grav-
ity. The electromagnetic forces, on the other hand, tend to suppress
this motion. The governing equation of motion is,

Du

Dt
= −∇

(
p

ρ

)
+ gαT êz + j × B

ρ
, (1)

where p is the fluid pressure, D/Dt is the total derivative, and j is
the electric current density. For small Rm , Ohm’s law has the form
[13]

j = σ(−∇φ + u × B), (2)

where φ is the electric potential and σ is the electrical conductiv-
ity. Now, the poloidal velocity field u interacts with B to produce
electric currents that are purely azimuthal. These current lines au-
tomatically form closed loops without the need for a net induced
electric potential gradient. Hence, the induced current is,

jθ = −σur Bêθ ,

and the “braking” Lorentz force is given by [9],

Fp = jθ × B

ρ
= −ur

τ
êr, (3)

where τ = ρ/σ B2 is the typical electromagnetic damping time,
also known as the Joule time. Thus the governing equations of our
problem are,

DT

Dt
= 0; (4)

Du

Dt
= −∇

(
p

ρ

)
+ gαT êz − ur

τ
êr, (5)

where we have neglected thermal diffusion. Although turbulent
diffusion of momentum and heat cannot be ignored either in a
laboratory MHD experiment or in the Earth’s liquid iron core [11],
here we assume that these are small compared to magnetic diffu-
sion over the localized volume of a fluid blob.

The curl of Eq. (5) gives the vorticity equation:

D

Dt

(
ωθ

r

)
= −1

r

(
gα

∂T

∂r
+ 1

τ

∂ur

∂z

)
. (6)

The growth of the azimuthal vorticity, ωθ is fed by ∂T /∂r, the pro-
cess being checked by the electromagnetic forces. The dissipative
effect of the magnetic field may be understood from the energy
equation, obtained by taking the dot product of (5) with u and
integrating the result over the fluid volume:

d

dt

∫ (
u2

2

)
dV =

∫
gαT uz dV − 1

τ

∫
u2

r dV . (7)

The first term on the right-hand side of (7) is the rate of working
of the buoyancy force (usually, but not always positive) and the
second term corresponds to Ohmic dissipation of the flow. Now,
using (4) we may write,

gαT uz = D

Dt
[gαT z].

Thus the energy equation may be re-written as,

d

dt

[∫ (
u2

2

)
dV

︸ ︷︷ ︸
KE

+
∫

g
δρ

ρ
z dV

︸ ︷︷ ︸
PE

]
= 1

τ

∫
u2

r dV . (8)

As the blob rises, the kinetic energy (KE) grows at the expense of
the potential energy (PE), but the total energy falls as a result of
Ohmic dissipation.

For axisymmetric motion, the poloidal velocity field u in (5)
may be expressed in terms of a streamfunction, ψ in cylindrical
polar coordinates:

u = (ur,0, uz) =
(

−1

r

∂ψ

∂z
,0,

1

r

∂ψ

∂r

)
,

so that, the azimuthal vorticity, ωθ , and ψ are related by [7],

rωθ = −
[

∂2ψ

∂z2
+ r

∂

∂r

(
1

r

∂ψ

∂r

)]
= −∇2

 ψ. (9)

Hence, (6) may be recast as an equation in ψ as follows:

D

Dt
∇2

 ψ = r
∂

∂r
(gαT ) − 1

τ

∂2ψ

∂z2
. (10)

The second term on the right-hand side of (10) represents diffusion
of streamlines along the magnetic field lines, which competes with
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the generation of the poloidal flow by temperature gradients, given
by the first term on the right.

In the next section, the evolution of a blob in a confined do-
main is discussed. Comparisons with the results for an infinite
domain are made where appropriate.

3. The model problem

Our model problem is shown schematically in Fig. 1(b). The
buoyant parcel is located at the centre of a tall cylindrical cavity
containing quiescent, electrically conducting fluid. The initial tem-
perature distribution is

T = T0 exp
[−(

r2 + (z − L/2)2)/δ2], (11)

where T0 is the maximum temperature at the centre of the dis-
turbance, L is the length of the cavity, R is its radius and δ is
the decay lengthscale of the temperature perturbation. We choose
L � δ, so that the dynamics of the blob can be studied for a long
period of time before boundary effects come into play. As the blob
rises, the generated flow is marked by streamlines which have the
closed pattern shown in Fig. 1(b). As we shall see in Section 4, the
choice of the above cylindrical geometry admits a simple spectral
solution of the model problem, while not affecting the generality
of the analysis.

3.1. Integrals of vorticity and momentum

Integrating (6) over the entire volume yields

d

dt

∫ (
ωθ

r

)
dV = 2π

L∫
0

gαT (r = 0, z)dz

− 2π

τ

R∫
0

[
(ur)T − (ur)B

]
dr, (12)

where the subscripts T and B represent the top and bottom of the
cavity. Note that second term on the right side of (12) is positive
for a rising blob, as the radial velocity of the fluid is higher at the
top than at the bottom. Hence, the growth of ωθ/r with time is
not monotonic as for an infinite domain [9], but restricted by the
imposed magnetic field. The linear momentum of the flow, given
by [13]

L = 1

2

∫
(x × ω)dV

has the only non-zero component Lz = 1
2

∫
rωθ dV . The evolution

of linear momentum may thus be written as follows:

DLz

Dt
= D

Dt

(
1

2
rωθ

)
= −1

2
r

[
∂

∂r
(gαT ) + 1

τ

∂ur

∂z

]
+ urωθ .

Substituting for ωθ = (∂ur/∂z − ∂uz/∂r), invoking the continuity
equation, and after some manipulation, we obtain

D

Dt

(
1

2
rωθ

)
= gαT − 1

2r

∂

∂r

(
r2 gαT

) − r

2τ

∂ur

∂z

+ ∂

∂z

(
u2

r

2
− u2

z

2

)
− 1

r

∂

∂r
(ruruz). (13)

Integrating (13) over the entire volume then yields,

d

dt

∫ (
1

2
rωθ

)
dV =

∫
gαT dV − π

τ

R∫
0

r2[(ur)T − (ur)B
]

dr

+ π

R∫
r
[(

u2
r

)
T − (

u2
r

)
B

]
dr, (14)
0

as the remaining terms vanish. The first term on the right-hand
side of (14) is an invariant as temperature is materially conserved
by way of (4). Under a magnetic field, the second term on the right
side of (14) could be significant and of the same order as the first
term, cancelling out the temperature integral. The third term on
the right is usually small as it involves squares of radial velocities
of opposite sign but comparable magnitudes. For an infinite do-
main, both the second and third terms on the right-hand side of
(14) vanish and hence the vertical momentum increases linearly
with time, unaffected by the magnetic field.

3.2. Long-time behaviour in a strong magnetic field: A quasi-steady
state

It is common to express the strength of the applied magnetic
field in terms of a dimensionless number, the magnetic interaction
parameter, defined as the ratio of the eddy turn-over time to the
Joule time [1]:

N = l/u

τ
= σ B2δ

ρu
. (15)

In classical hydrodynamics, the velocity of a buoyant fluid blob is
commonly estimated by u ∼ (gαT0δ)

1/2, from a balance between
the buoyancy and nonlinear inertial forces in the equation of mo-
tion. However, in the presence of a strong magnetic field, nonlinear
inertia is negligible in comparison with the Lorentz force and so
the magnetic field determines the fluid velocity from time t ∼ τ .
The radial velocity at t ∼ τ is estimated from (5) as

ur ∼ gαT0τ .

Thus, the interaction parameter at t ∼ τ is given by

N0 = δ

gαT0τ 2
. (16)

For times t > τ , the flow diffuses along the magnetic field lines,
and the dominant component of the velocity would be the vertical
(z) component, estimated by

uz ∼ gαT0τ
l‖
δ

, (17)

where l‖ is the lengthscale parallel to B. The maximum vertical ve-
locity of the parcel in a cavity of length L would thus be of order
gαT0τ L/δ. Note, however, that if the magnetic field is strong, τ is
small, and so is uz . This implies that the advection of the temper-
ature field is small and the blob is hardly displaced from its initial
position at the centre of the cavity in Fig. 1(b).

To obtain the long-time behaviour of the blob, we consider (6)
in the limit of large N:

∂ωθ

∂t
= −gα

∂T

∂r
− 1

rτ

∂2

∂z2

[∇−2
 (rωθ)

]
, (18)

where ∇−2
 is the inverse of the special Laplacian operator in (9).

An order-of-magnitude estimate of the electromagnetic force on
the right-hand side of (18) gives

∂ωθ

∂t
∼ −gα

∂T

∂r
+ δ2

τ

∂2ωθ

∂z2
. (19)

The vorticity thus propagates along the z-coordinate with a
pseudo-diffusivity δ2/τ . (Compare this with the analogous prob-
lem of two-dimensionalization of an MHD turbulent flow [14].)
It is evident from (19) that, for a confined domain of length L,
a quasi-steady state is attained for

t = tqs �
(

L2

δ2

)
τ . (20)
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Fig. 2. When N � 1, the temperature gradients are confined to the region between
the sections z1 and z2. These gradients determine the streamfunction in the hatched
region.

Under this steady-state condition, Eq. (6) reduces to

gα
∂T

∂r
+ 1

τ

∂ur

∂z
= 0. (21)

The regime given by (21) presents a few interesting features that
serve as diagnostics for high N (a strong magnetic field). Since the
temperature distribution at any time may be assumed to be iden-
tical to that at t = 0, i.e. (11), the temperature gradients in (21)
are confined to the sections z1 and z2 that enclose the blob (see
Fig. 2). The values of z1 and z2 are determined by the decay length
of the perturbation, δ. It follows that the radial velocity, ur , in the
outer region shown hatched in Fig. 2 is independent of z. Also, by
virtue of the symmetry of the temperature distribution about the
z = L/2 plane, ur at any section in the upper half of the cylindrical
domain is equal and opposite to its value at the section equidis-
tant from the mid-plane in the lower half. Integrating (21) over z
between limits z1 and z2, we obtain,

V (r) = τ

2

z2∫
z1

gα
∂T

∂r
dz. (22)

Thus, the streamfunction, ψ , is given by

ψ(r, z) = rV (r)(L − z). (23)

Further, from (12) and (14), we obtain,

R∫
0

ur dr = 1

2
gατ

L∫
0

T (r = 0, z)dz; (24)

R∫
0

r2ur dr = τ gα

2π

∫
T dV . (25)

The left-hand side integrals in (24) and (25) may be evaluated for
any z in the range z2 < z < L.

3.3. A nonlinear regime

Let us now consider a buoyant blob of fluid evolving either (a)
in a moderate/weak magnetic field or (b) in a strong magnetic field
but in a domain whose axial length is considerably larger than the
lengthscale of the density perturbation. We shall assume that the
Lorentz force is dominant at t ∼ τ , so that the initial evolution is
linear and governed by (18). However, the vertical velocity, given
by (17), also becomes significant as time progresses. As the convec-
tive turn-over time becomes shorter, the nonlinear inertial forces
in the momentum equation increase in magnitude and eventually
become comparable to the Lorentz force. The evolution of the blob
then ceases to be linear. As both the Lorentz and inertial forces are
generally rotational, the relative magnitudes of the two forces are
estimated by

Nt = ∇ × (j × B)

∇ × (u · ∇u)
∼ δ/uz

τ

(
δ

l‖

)2

, (26)

where Nt is the true value of the interaction parameter. Since (19)
suggests that the diffusive lengthscale, l‖ grows as ∼ δ(t/τ )1/2 in
the initial linear phase, and the transverse lengthscale δ is unaf-
fected by the magnetic field, (26) is readily simplified as

Nt ∼ N0(t/τ )−3/2, (27)

where N0 is the interaction parameter at t = τ . In other words,
Nt decreases continuously from its value at t = τ , and when
t = tnl ∼ N2/3

0 τ , a nonlinear phase of evolution is reached. As the
Lorentz force, given by (3), remains approximately constant, fur-
ther ‘free’ evolution of the blob (i.e. unaffected by the boundaries)
would lead to a dominance of the inertial forces. This strongly
nonlinear regime where Nt < 1 is marked by advection of the tem-
perature and vorticity fields, causing the blob to deform into the
well-known mushroom-like structure with steep gradients at its
front [8].

It is worth comparing the linear–nonlinear transition of a buoy-
ant blob with an equivalent transition in the analogous problem
of a freely-decaying vortex under a magnetic field [5,6]. Consider
an isolated fluid vortex of radius δ with its axis aligned with a
strong, uniform magnetic field B at t = 0. While the flow diffuses
along the magnetic field lines, the convective turn-over time δ/u
increases because the kinetic energy falls by Ohmic dissipation.
However, the electric current density also falls significantly dur-
ing this phase as the axial currents have to travel through longer
paths, as evident from the curl of Ohm’s law:

∇ × j = σ(B · ∇)u ∼ σ Bu/l‖,

where σ is the conductivity of the fluid and l‖ is the length-
scale parallel to the magnetic field direction. The rate of fall of the
Lorentz forces is greater than the rate of fall of the inertial forces,
and eventually, the evolution enters a nonlinear phase wherein the
two forces are of the same of magnitude. Sreenivasan and Albous-
sière [5] found that the interaction parameter for this case varies
as

Nt ∼ N0(t/τ )−1/2,

where N0 here is the interaction parameter at t = 0. When t =
tnl ∼ N2

0τ , the flow becomes nonlinear.
In summary, the evolution of a buoyant blob in a given mag-

netic field is influenced by two timescales—one for the attainment
of a quasi-steady state, tqs; and one for the onset of nonlinear evo-
lution, tnl . The long-time structure of the buoyant fluid blob would
be determined by whether tqs is less or greater than tnl .

4. Computational experiments

In this section, the evolution of a localized buoyant parcel of
fluid contained in a finite domain is studied numerically. The basic
configuration is as in Fig. 1(b), where the initial axisymmetric tem-
perature distribution of characteristic lengthscale δ, given by (11),
is located at the centre of a cylindrical cavity of length L = 20δ
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and radius R = 5δ. Eqs. (4) and (5) are solved for the above ini-
tial condition. The blob radius is chosen as 0.01 units, and the
constant gαT0 is chosen to be 0.012, corresponding to values of
g = 10 ms−2, α = 6 × 10−5 and T0 = 20 ◦C. The temperature T is
expanded as the following Fourier–Bessel series:

T =
∑
m,n

T̂mn J0(εnr/R) sin(mπ z/L), (28)

where εn are the roots of J0(x). The temperature is zero at the
boundaries, so the maximum temperature difference, T0, drives a
confined, axisymmetric poloidal velocity field given by the stream-
function,

ψ =
∑
m,n

ψ̂mn
r

R
J1(εnr/R) sin(mπ z/L). (29)

The numerical method involves time-stepping the spectral coeffi-
cients T̂ and ψ̂ and recovering the temperature and streamfunc-
tion using the inverse transformations of (28) and (29), quite sim-
ilar to that used for the analogous problem of a swirling vortex in
a confined domain [5]. The induced electric currents do not need a
boundary condition as they are purely azimuthal. As temperature
should be materially conserved by (4), the maximum temperature
is tracked during the simulation to check for accuracy. When the
maximum temperature falls by 0.5% of its value at t = 0, the sim-
ulation is stopped.

The magnetic field strength is determined by the value of τ in
the model. All calculations are performed for an interaction param-
eter, N0 � 1, where N0 is defined at t = τ by (16). At this stage,
the Lorentz force is dominant, and the turn-over time δ/u is con-
trolled by the magnetic field, via (17). From the scaling for uz , the
kinetic energy of the flow is scaled based on its terminal value in
this ‘linear’ phase:

E = 1

2

∫
u2 dV ∼ (gαT0τ )2L3. (30)

Secondly, since the axial location of the blob, z f is related to uz by
dz f /dt = uz , we obtain

z f ∼ gαT0τ
2L/δ. (31)

Finally, the global linear momentum, L, scales as

L = 1

2

∫
rωθ dV ∼ gαT0τ L2δ. (32)

Fig. 3(a) shows the evolution of the global kinetic energy den-
sity, 1

2 u2. The stronger the magnetic field (the smaller the value
of τ ), the smaller the energy released to the poloidal flow. When
the energy is normalized by the scaling in (30), the curves collapse
into one, indicating a self-similar behaviour in the linear phase
of evolution [Fig. 3(b)]. The kinetic energy for N0 = 8.35 × 105

(τ = 10−3; case 1 in Table 1) saturates into a quasi-steady state,
showing that the work done by buoyancy is absorbed entirely by
Ohmic dissipation in Eq. (7). Although the estimate (20) predicts
a steady state for t > 400τ for this geometry (L = 20δ), we find
a gradual transition to this state up to t ∼ 1500τ . The energies
for N0 = 5.208 × 104 and 8333.3 (cases 2 and 3) depart from
self-similar behaviour at t ≈ 1000τ and t ≈ 300τ respectively, sug-
gesting that the scaling (17), valid for N � 1, breaks down at these
times. Now, the onset of nonlinear evolution, described in Sec-
tion 3.3, is expected to happen when t = tnl ∼ N2/3

0 τ . A comparison
of the value of tnl in the computations with this theoretical esti-
mate is given in Table 1, cases 2–4. The ratio of the two times is
of order unity.

It is evident from the computations that the evolution of the
buoyant blob depends entirely on the relative magnitudes of the
timescales for attainment of the nonlinear and quasi-steady states,
Fig. 3. (a) Logarithmic plot of global kinetic energy, E , with values of τ shown near
each curve. (b) Global kinetic energy, normalized by the scaling in (30). The ver-
tical lines correspond to the times when self-similarity breaks down, indicating a
transition to the nonlinear phase of evolution.

Table 1
Summary of the buoyant blob regimes considered in this study. The comparison
between theoretical estimates and computed values of tnl is given where linear–
nonlinear transitions are found

No. τ L u(t ∼ τ ) N0 tnl (theor) tnl (comp)

1 10−3 20δ 1.2 × 10−5 8.33 × 105 8854τ –
2 4 × 10−3 20δ 4.8 × 10−5 5.208 × 104 1395τ 1000τ

3 10−2 20δ 1.2 × 10−4 8333.3 411τ 300τ

4 10−1 20δ 1.2 × 10−3 83.33 19τ 20τ

tnl and tqs . In cases 2–4 in Table 1, tnl is either of the same or-
der of magnitude as, or significantly smaller than, tqs (tqs ∼ 1500τ
in the computation). Hence, the advection of temperature (and
vorticity) becomes significant. For the strongest magnetic field
(N0 = 8.33 × 105; case 1), on the other hand, the theoretical esti-
mate of the linear–nonlinear transition time gives tnl ∼ 8854τ . This
timescale being significantly larger than tqs , the evolution never
becomes nonlinear, but becomes quasi-steady when the flow dif-
fuses over the entire axial length of the domain (also see Fig. 7).
A cavity with axial dimension L � 50δ would be required to force a
nonlinear regime in this case. To test the competition between the
timescales tqs and tnl in the problem, two runs were performed
for N0 = 8333.3 (see case 3), but in shorter cavities of L = 8δ

and 5δ. The kinetic energy readily enters a steady state from an
initial linear phase when L = 5δ because tqs < tnl for this geome-
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Fig. 4. Global kinetic energy, normalized by the scaling in (30), for N0 = 8333.3. The
different domain geometries studied are (a) 5δ × 5δ (thick solid line); (b) 8δ × 5δ

(dashed line) and (c) 20δ × 5δ (thin solid line).

Fig. 5. (a) Axial displacement of the blob, z f , for N0 = 8.3 × 105 (circles),
N0 = 5.2 × 104 (squares) and N0 = 8333 (crosses). (b) Axial displacement normal-
ized by the scaling in (31).

try (Fig. 4). For L = 8δ, the kinetic energy departs from the steady
state at t ∼ 300τ , the timescale for nonlinear transition.

Fig. 5 gives the vertical displacement of the blob as a function
of time, obtained by tracking the axial location of the maximum
temperature during the calculation. From Fig. 5(a) it is evident that
the motion of the blob is severely restricted by a strong magnetic
Fig. 6. Global Linear momentum normalized by the scaling in (32). The curves for
N0 = 8.3 × 105, N0 = 5.2 × 104 and N0 = 8333 collapse to a single curve.

Fig. 7. Contour plots of ωθ /r for N0 = 8.33 × 105, at times t = 5τ , 18τ , 100τ , 300τ
and 500τ .

field. The curves of normalized displacement in Fig. 5(b) confirm
the scaling for N � 1 but are less sensitive to the onset of nonlin-
ear inertia. From the curves of global linear momentum in Fig. 6,
we find that the initial growth of momentum is cancelled out by
the magnetic field acting at t ∼ τ via Eq. (14). Again, a quasi-steady
state is reached for N0 = 8.33 × 105 and self-similarity holds with
the scaling in (32).

The structures of the temperature field and flow, given in
Figs. 7–9 support our earlier findings. Fig. 7 shows the vorticity dif-
fusing along the magnetic field lines, for N0 = 8.33 × 105 (case 1,
Table 1). At t ∼ 500τ , a quasi-two-dimensional state is reached
where the lines of vorticity fill the entire domain. This evolution
is consistent with the (t/τ )1/2 growth of the parallel lengthscale.
From Fig. 8, we note that the initial temperature distribution is
preserved throughout the simulation, pointing to negligible advec-
tion of temperature for this case. The streamlines are spread out
in radius during the initial phase of growth of ψ , but are even-
tually confined to a thin cylindrical region that circumscribes the
density perturbation, where the radial temperature gradient is ap-
preciable (note from (10) that the structure of ∂T /∂r determines
the structure of ψ when D/Dt = 0). For N0 = 5.208 × 104, the
temperature and vorticity fields undergo some distortion within
t ∼ 1000τ , indicating that the advection of these fields is not small.
For N0 = 8333.3 (Fig. 9), this distortion is appreciable for t > 350τ .
The blob develops steep gradients at the front and an indentation
at its base.
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Fig. 8. Contour plots for the case N0 = 8.33 × 105, shown from left to right in this
order: temperature, T , at time t = 100τ ; T at t = 2500τ ; streamfunction, ψ , at
t = 100τ ; ψ at t = 2500τ .

Fig. 9. Contour plots for N0 = 8333.3, shown from left to right: T at time t = 350τ ;
T at t = 600τ ; ωθ/r at t = 600τ ; ψ at t = 600τ .

We finally return to the quasi-steady solution of case 1 (N0 =
8.33 × 105), which presents some interesting features as noted
in Section 3.2. Fig. 10 shows the radial velocity, ur at different
axial locations, z. For z > 0.6L, where temperature gradients are
small, ur becomes independent of z and tends to the function V (r)
in (22). In Fig. 11, the left- and right-hand sides of (25) are com-
pared, with the left-hand side evaluated at different z. We find that
the two quantities are equal in the range 0.6 < z/L < 1.0 that lies
outside the density perturbation, consistent with the discussion at
the end of Section 3.2.

5. Conclusion

In this study, we have looked at the fundamental problem of
the evolution of a buoyant blob of fluid subject to a vertical mag-
netic field. Contrary to what is found for the evolution of a blob
in an infinite domain, both the vorticity and linear momentum of
a fluid blob in a finite domain are constrained by the magnetic
field. The final state of the blob is determined by two competing
Fig. 10. Radial variation of ur at different axial locations, for N0 = 8.33 × 105

and t = 2700τ (in the quasi-steady state). The curves from bottom to top are for
z/L = 0.52 (solid line), 0.55 (dotted), 0.58 (dashed), 0.60 (dashed-dotted), 0.65 and
0.70 (superposed solid lines).

Fig. 11. Comparison of the left-hand and right-hand sides of (25), given by I1 and
I2 respectively, for N0 = 8.33 × 105 at t = 2700τ (quasi-steady state). The constant
value of I2 is given by the thin vertical line.

timescales: that for the attainment of a quasi-steady state, and that
for the emergence of nonlinear advection of vorticity. The relative
magnitudes of these timescales are dependent on the strength of
the magnetic field as well as the aspect ratio of the fluid domain.
Under a strong-enough magnetic field, the quasi-steady timescale
controls the dynamics of the blob. In large fluid domains and weak
magnetic fields, the nonlinear timescale takes control, and the sub-
sequent behaviour would be similar to what we find in classical
(nonmagnetic) flows.
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