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It is commonly observed that the columnar vortices that dominate the large scales in homogeneous,
rapidly rotating turbulence are predominantly cyclonic. This has prompted us to ask how this
asymmetry arises. To provide a partial answer to this we look at the process of columnar vortex
formation in a rotating fluid and, in particular, we examine how a localized region of swirl �an eddy�
can convert itself into a columnar structure by inertial wave propagation. We show that, when the
Rossby number �Ro� is small, the vortices evolve into columnar eddies through the radiation of
linear inertial waves. When the Rossby number is large, on the other hand, no such column is
formed. Rather, the eddy bursts radially outward under the action of the centrifugal force. There is
no asymmetry between cyclonic and anticyclonic eddies for these two regimes. However, cyclones
and anticyclones behave differently in the intermediate regime of Ro�1. Here we find that the
transition from columnar vortex formation to radial bursting occurs at lower values of Ro for
anticyclones, with the transition for anticyclones occurring at Ro�0.5, and that for cyclones at
Ro�2. Thus, in a homogeneous turbulence experiment conducted at, say, Ro=1, we would expect
to see more cyclones than anticyclones. The reason for this asymmetry at Ro�1 is explained.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2966400�

I. INTRODUCTION

The motivation for this work stems from the observation
that, typically, many more cyclones than anticyclones are
observed in homogeneous, rapidly rotating turbulence. While
we do not study turbulence here, but rather a more idealized,
deterministic problem, it may be worth reviewing briefly the
evidence from these turbulent flows.

It is well-known that the large scales in rapidly rotating
turbulence tend to be dominated by columnar vortices
aligned with the rotation axis �see, for example, Refs. 1 and
2�. In freely decaying, homogeneous turbulence, these co-
lumnar vortices first appear when the Rossby number,
Ro=u /�l, falls below �1, where � is the bulk rotation rate,
l a suitably defined integral scale, and u a characteristic ve-
locity of the turbulence measured in the rotating frame of
reference. This growth of columnar vortices is clearly evi-
dent in the experiments of, say, Davidson et al.2 and Staple-
hurst et al.,3 and the mechanism by which they form is
quasilinear inertial wave propagation.2,3 That is to say, for
Ro�1, eddies �i.e., blobs of vorticity� tend to disperse their
energy and momentum by linear inertial wave propagation,
and while much of this energy is dispersed randomly, there is
a systematic preference for vortex blobs to radiate energy
along the rotation axis, elongating the eddies into columnar
structures.2 In homogeneous turbulence this process is ob-
served to occur not only for small Ro but also for larger Ro,
say, Ro�1.3

For Ro�1, a second related phenomenon is observed:
there are more cyclones than anticyclones in the sense that
the long-lived, intense regions of �z are more likely to be

positive than negative. �Here �z is the vorticity component
parallel to �, measured in the rotating frame.� This prefer-
ence for cyclones is clearly evident in the numerical simula-
tions of Bartello et al.,4 van Bokhoven et al.,5 and Bourouiba
and Bartello6 and in the laboratory experiments of Hopfinger
et al.,1 Morize et al.,7 and Staplehurst et al.3 In Refs. 3–7, for
example, the vorticity skewness, S= ��z

3� / ��z
2�3/2, is found to

be positive, indicating that large positive values of �z are
more likely than large negative values.

The reason for the dominance of cyclones is still poorly
understood, though several explanations have been offered.
For example, Bartello et al.4 noted that, in an inertial frame
of reference, where the axial vorticity is �z+2�, two-
dimensional axisymmetric cyclones of the form u=u��r�ê�

generally satisfy Rayleigh’s stability criterion, whereas the
corresponding anticyclones are Rayleigh unstable when Ro
exceeds �1. In this picture, then, both cyclones and anticy-
clones form, but only the former provide stable, long-lived
structures at Ro�1. An alternative explanation has been put
forward by Gence and Frick.8 They considered the situation
in which fully developed, isotropic turbulence is suddenly
subjected to bulk rotation at t=0. �This requires an infinite
acceleration.� They showed that, at t=0,

�

�t
��z

3� = 0.4���i� jSij�0, �1�

where Sij is the rate of strain tensor. Since ��i� jSij� is posi-
tive in mature, isotropic turbulence, the vorticity skewness
grows from S=0 at t=0 to S�0 for t=0+. Note that this
second argument is independent of the value of Ro and de-
pends crucially on the choice of the initial condition.

In this paper we offer a third explanation. We suggest
that, at Ro�1, it is not that both cyclones and anticyclones
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form, with the anticyclones subsequently going unstable, but
rather that anticyclones are less likely to form in the first
place. The argument proceeds by considering the somewhat
idealized problem of the fate of isolated blobs of vorticity
�eddies� sitting in an otherwise quiescent, rotating fluid. For
Ro�1, we know that such blobs will evolve into columnar
vortices via inertial wave propagation,2 and it does not mat-
ter if the average rotation of the blob is cyclonic or anticy-
clonic. For Ro�1, on the other hand, no such columnar
vortex will appear, with the vorticity distribution determined
by nonlinear dynamics, i.e., the advection and stretching of
vorticity. In the case of a simple, localized region of swirling
fluid, for example, the vortex blob bursts radially outward
under the action of the centrifugal force, creating a thin an-
nular sheet of vorticity.9 Again, it does not matter whether
the mean rotation of the blob is cyclonic or anticyclonic. The
key point, however, is the following. We shall show that, for
localized regions of swirl, the transition from columnar vor-
tex formation to radial bursting is surprisingly rapid, and that
the nature of this transition depends crucially on whether the
vortex is cyclonic or anticyclonic. For the initial conditions
considered here, the transition for cyclones occurs in the
range 1.4�Ro�3, with columnar vortex formation below
Ro=1.4 and centrifugal bursting for Ro	3. For anticyclonic
blobs, however, the transition occurs at lower values of Ro,
around 0.4�Ro�1.6, with columnar vortex formation for
Ro�0.4. Thus, if we consider an initial condition composed
of a random sea of vortex blobs with Ro�1, one might
expect to see more cyclonic columnar vortices emerge than
anticyclonic ones. While the model problem considered here
is highly idealized, consisting of localized vortex blobs, the
results seem consistent with the experimental observations.
Moreover, as we shall see, our findings are not peculiar to the
particular initial conditions considered here. Indeed, we shall
show that any axisymmetric vortex blob in which the angular
velocity decreases monotonically with radius behaves in a
similar fashion; that is, the transition from columnar vortex
formation to radial bursting occurs at a significantly lower
Ro for anticyclones.

We conclude this introduction by noting that there is a
substantial body of literature that addresses the cyclone-
anticyclone asymmetry in geophysical flows, such as
shallow-water, quasigeostrophic, or rotating-stratified turbu-
lence �see, for example, Refs. 10–13�. This is an altogether
more complex problem, where stratification and surface
waves can play an important role. Here we ignore such com-
plexities and are motivated by the simpler situation of homo-
geneous turbulence in the presence of bulk rotation, as dis-
cussed in the laboratory experiments and numerical
simulations of Refs. 1–8.

II. THEORETICAL BACKGROUND

In order to place the subsequent discussion in perspec-
tive, it is useful to review briefly what we know about the
evolution of a localized blob of vorticity in a rotating fluid.
We shall consider the cases of Ro�1 and Ro�1, describing
how columnar vortices �Taylor columns� form for low Ro
and how a swirling blob of fluid bursts radially outward to

form an annular vortex sheet when Ro�1. This discussion is
brief and based on the detailed analysis of Refs. 2 and 9. We
shall also touch briefly on the analogy between swirl and
buoyancy, as this will prove useful in the interpretation of
our numerical results in Secs. IV and V. For simplicity, we
shall ignore viscosity throughout.

A. The formation of columnar vortices
at low Rossby number

Consider the initial value problem consisting of a local-
ized blob of vorticity sitting in an otherwise quiescent, rap-
idly rotating fluid. Let the bulk rotation rate be �=�êz, the
characteristic scale of the blob be 
, and a typical velocity
scale be u. If Ro=u /�
�1 then the inertial force u ·�u is
much weaker than the Coriolis force 2u��, and the gov-
erning equation of motion can be linearized to give

�u

�t
= 2u � � − ��p/�� . �2�

The subsequent motion then consists of a spectrum of
linear inertial waves whose frequency 
 and group velocity
cg are dictated by the initial distribution of wave vectors k
according to


 = � 2�� · k�/�k� , �3�

cg = � 2k � �� � k�/�k�3. �4�

For an arbitrarily shaped blob of vorticity we might ex-
pect the corresponding spectrum of wave vectors to be
equally random, and so Eq. �4� suggests that energy and
vorticity will disperse in all directions with a typical speed
�cg���
. However, Davidson et al.2 showed that this radia-
tion of energy is subject to a powerful constraint, which sys-
tematically favors dispersion along the rotation axis. In par-
ticular, it may be shown that the axial components of the
linear and angular impulses of the initial vortex blob �mea-
sured in the rotating frame� are confined for all times to the
cylindrical region, which circumscribes the vortex at t=0.
Thus linear and angular momenta can disperse along the ro-
tation axis only. It is clear that this constraint systematically
biases the dispersion of energy. For example, as energy radi-
ates to fill a volume of size ��cgt�3���t
�3, we could ex-
pect the velocity outside the tangent cylinder to fall as �u�
��u0���t�−3/2. However, inside the tangent cylinder the an-
gular momentum is confined to a cylindrical region of size
�cgt
2��t
3, and so the characteristic velocity inside the
cylinder falls more slowly, as �u���u0���t�−1 �see Ref. 2�.
These predictions are readily confirmed by, say, the method
of stationary phase.

A simple, almost trivial, example illustrates the point.
Suppose our initial condition consists of

u = �r exp�− �r2 + z2�/
2�ê� �5�

in cylindrical polar coordinates, where � is a measure of the
initial vortex strength. Then Eq. �2� yields the axisymmetric
wave equation
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�2

�t2��
2� + �2��2�2�

�z2 = 0, �6�

where �=ru� and ��
2 is the Laplacian-like operator,

��
2� = r

�

�r

1

r

��

�r
+

�2�

�z2 . �7�

This may be readily solved using a Hankel-cosine trans-
form, which yields2

u� 	 �


0

�

�2e−�2
J1�2�r/
��exp�− 
 z



−

�t

�
�2�

+ exp�− 
 z



+

�t

�
�2��d� , �8�

where J1 is the usual Bessel function, �=kr
 /2, and kr is the
radial wavenumber. Evidently, the kinetic energy disperses
along the z axis, forming two columnar structures �Taylor
columns� whose centers are located at z= �
�t and whose
lengths grow as lz�
�t. This is illustrated in Fig. 1. Note
that the fate of the vortex is independent of whether it is
cyclonic or anticyclonic. The precise form of Eq. �8� for
�t�1 may be found by insisting that the arguments in the
exponentials remain of order unity as �t→�. At location z
=
�t, for example, we have

u��r,z = 
�t� 	 �
 ��1/2/e�J1�2r/
���t�−1, �t → � ,

�9�

which gives u���
 ��t�−1 within the tangent cylinder, r
�
, and u���
��t�−3/2�r /z�−1/2 for r�
, in line with the
discussion above.

The experiments described in Refs. 2 and 3 show that
this kind of linear inertial wave propagation lies behind the
columnar structures observed in rotating turbulence when
Ro�1.

B. The radial bursting of a Gaussian vortex for Roš1

Let us now consider the opposite extreme, in which the
Rossby number is large. For simplicity we consider the same
initial condition as before, i.e., Eq. �5�. This problem is dis-
cussed in detail in Ref. 9 and we merely summarize the key
results. Since we are considering the limit of Ro→�, or �
→0, our frame of reference reverts to an inertial frame. Our
inviscid Gaussian vortex now evolves according to

D�

Dt
= 0, �10�

D

Dt

��

r
� =

1

r4

��2

�z
, �11�

where �=ru� and �� is the azimuthal vorticity. At t=0, the
poloidal velocity, up= �ur ,0 ,uz�, is zero by virtue of our
choice of initial condition, and so ��=��up is also zero.
However, it is clear from Eq. �11� that �� is nonzero for
t�0 and the source of this vorticity is evident: the right-hand
side of Eq. �11� has its roots in �� �u���p�, and so �� is
produced whenever differential rotation �axial gradients in ��
spirals up the poloidal vortex lines, �p=�� ��� /r�ê��. This
produces a skew-symmetric distribution in ��, with ���0
for z�0 and ���0 for z�0.

The subsequent development of the vortex is easy to
predict. The poloidal velocity associated with �� sweeps the
� lines radially outward, in accordance with Eq. �10� and as
shown in Fig. 2. Integrating Eq. �11� yields

d

dt



z�0

��

r
dV = 2�


0

� �0
2

r3 dr , �12�

where �0�r�=��r ,z=0� is the angular momentum density on
the symmetry plane. Thus, the integral of ��� /r� increases
monotonically as the � lines get swept radially outward.
Eventually the � lines form a thin axisymmetric sheet, as
shown in Fig. 2, and since � is the Stokes stream function for

δΩt

δΩt

lz ∼ δΩt

FIG. 1. An initial blob of vorticity converts itself into a pair of columnar
vortices via inertial wave propagation �Ro�1�.

FIG. 2. The centrifugal bursting of a swirling vortex �Ro�1�: �i� the initial
condition, �ii� the associated poloidal vorticity, �iii� azimuthal vorticity
swept out from the poloidal vorticity by differential rotation, �iv� the poloi-
dal velocity associated with the azimuthal vorticity sweeps out the angular
momentum �, and �v� the eventual state.
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�p, this is a poloidal vortex sheet. The mushroom-like shape
of this vortex sheet is reminiscent of a thermal plume and
indeed there are close analogies to buoyancy, as discussed in
Sec. II C. In Ref. 9, it is shown that, at large times, the vortex
sheet propagates radially outward with constant velocity
while thinning exponentially fast.

Evidently, the fate of our Gaussian vortex is radically
different depending on whether Ro�1 or Ro�1. The only
thing the two limits have in common is that it does not mat-
ter whether the initial vortex is cyclonic or anticyclonic. The
main purpose of this paper is to explore the intermediate
regime of Ro�1 and, in particular, the transition from co-
lumnar vortex formation to radial bursting. Our primary find-
ing is that the transition occurs over a surprisingly small
range of Ro and that the nature of the transition depends
crucially on whether the initial vortex is cyclonic or anticy-
clonic. Before examining the numerical evidence, however,
it is worth reviewing one last topic: the analogy between
swirl and buoyancy. This will help in the interpretation of
our results.

C. The analogy between swirl and buoyancy

Consider an inviscid, axisymmetric flow evolving in an
infinite domain that may or may not have background rota-
tion. We shall find it convenient to temporarily adopt an in-
ertial frame of reference, so that any bulk rotation is ab-
sorbed into u. In such a case, axisymmetric flows with swirl
have a well-known analogy to flows driven by buoyancy.
Consider Eqs. �10� and �11� rewritten as

Dup

Dt
= − ��p/�� +

�2

r3 êr, � · up = 0, �13�

D�2

Dt
= 0. �14�

Compare these with the governing equations for a diffu-
sionless, Boussinesq fluid with density perturbation �� and
mean density �:

Du

Dt
= − ��p/�� + Tg, � · u = 0, �15�

DT

Dt
= 0, �16�

where T=�� /� and g is the gravitational acceleration. Equat-
ing �2 to T and r−3êr to g provides an exact analogy. Thus,
we could interpret Eqs. �13� and �14� as a poloidal flow
driven by density perturbations, �2, in a fictitious radial grav-
ity field, g=r−3êr. In doing so, we have reduced the problem
to that of a strictly poloidal flow evolving in the �r ,z� plane.
In this analogy, “heavy” fluid corresponds to large �2, while
“light” fluid corresponds to small values of �2, and potential
energy is released whenever the heavy fluid moves radially
outward, displacing the lighter fluid. Indeed, it is readily con-
firmed that the potential energy density corresponding to the
materially conserved density perturbation, T=�2, moving in

the fictitious radial gravity field, g=r−3êr, is simply 1
2u�

2.
Thus the conservation of kinetic energy

E =
1

2

 u�

2dV +
1

2

 up

2dV �17�

in the original problem is now interpreted as the conservation
of potential energy, 1

2�u�
2dV, plus kinetic energy, 1

2�up
2dV.

The radial bursting of the Gaussian eddy in Sec. II B is now
easy to interpret. We have a region of heavy fluid immersed
in lighter fluid, and this wants to move radially outward un-
der the action of the gravitational field, g=r−3êr. In doing so,
it releases potential energy, increasing the kinetic energy of
the poloidal flow.

This analogy also provides a simple interpretation of the
linear axisymmetric inertial waves discussed in Sec. II A. In
an inertial frame the background rotation, �=�r2, represents
a radially stratified density field and the inertial waves may
be interpreted as small-amplitude internal gravity waves
propagating in the fictitious radial gravity field. Indeed, Ray-
leigh derived his famous stability criterion for the steady
flow, u=u��r�ê�, using precisely this line of reasoning. That
is to say, he converted the problem of the stability of the
nonstatic equilibrium, u=u��r�ê�, to the problem of the static
equilibrium, up=0; �2=�2�r�, observing that stable configu-
rations are the ones in which light fluid lies closer to the axis
than heavy fluid, i.e., ��2 /�r�0, while unstable configura-
tions correspond to heavy fluid immersed in an annulus of
lighter fluid, ��2 /�r�0. In short, Rayleigh’s stability crite-
rion represents the trivial statement that the flow is stable if
and only if the radial stratification �2�r� is stable under the
action of the radial gravity field, g=r−3êr.

It might be noted that the trick employed by Rayleigh, of
converting to the analogous buoyancy problem, is not as ad
hoc as it might seem. It is a particular example of a more
general procedure in Hamiltonian mechanics, called Routh’s
procedure, in which the symmetries of a problem �the “ig-
norable coordinates” in the language of Hamiltonian me-
chanics� can be used to eliminate the corresponding degrees
of freedom.14,15

We shall find the analogy to buoyancy particularly useful
in Secs. IV and V when we investigate the evolution of a
localized blob of vorticity immersed in a rotating fluid. The
advantage of this analogy is that it provides a particularly
simple interpretation of the numerical findings, though its
disadvantage is that it requires us to revert to an inertial
frame of reference, which is not the natural frame when dis-
cussing localized disturbances in a rotating fluid. One of our
main findings is that initial conditions, which in an inertial
frame contain regions in which ��2 /�r�0 �heavy fluid im-
mersed in light fluid�, tend to burst radially outward rather
than form columnar vortices. On the other hand, initial con-
ditions in which ��2 /�r�0 invariably form columnar vorti-
ces. Note that this is not a trivial consequence of Rayleigh’s
stability theorem, as the initial conditions are not steady and
so it is meaningless to talk about whether or not they are
linearly stable. �One can only talk about the stability of
steady solutions of the governing equations.� This is why we
suggest that, in rotating turbulence, the prevalence of cy-
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clones is not because columnar anticyclones form and then
go Rayleigh unstable but rather that they are less likely to
form in the first place. Nevertheless, there is clearly a strong
physical link between our observation of the importance of
��2 /�r and Rayleigh’s stability criterion.

III. AN OUTLINE OF THE COMPUTATIONS

A. Problem specification and numerical strategy

We compute the initial value problem of a localized vor-
tex evolving in a rotating fluid. We use a noninertial frame of
reference rotating with the fluid, though on occasions it will
prove convenient to revert to an inertial frame. To distinguish

between the two, we use � �ˆ to denote a quantity measured in
the inertial frame. Thus, for example,

�̂ = �r2 + � . �18�

The initial condition in the rotating frame of reference is
axisymmetric and takes the form

u = �r
�r2 + z2�1/2



exp�− �r2 + z2�/
2�ê�. �19�

The flow is nominally inviscid, though we incorporate a
small but finite viscosity in order to ensure numerical stabil-
ity. The initial Reynolds number, based on 
 and the maxi-
mum velocity at t=0, is Re=5000. For large values of Ro,
steep radial gradients in � develop, as discussed in Sec. II B.
In order to ensure that there is adequate resolution in the

simulations, we track the maximum value of �̂, which should

be conserved in an inviscid flow. If �̂ was found to drop by
more than 2.5% of its initial value, the simulation was
stopped. Note, however, that tests with increased resolution

showed that much of the fall in �̂ was due to viscous diffu-
sion rather than due to loss of resolution.

The numerical scheme is described in Ref. 9 and uses
spherical polar coordinates16 expanded in terms of spherical
harmonics, is spectral in the azimuthal angle and colatitude,
and employs finite differences in the radial coordinate. The
initial computations for anticyclonic vortices at Ro=0.1, 1.0,
and 2.0 were fully three-dimensional and these showed that
the flow remains axisymmetric. Moreover, when a 2% non-
axisymmetric perturbation �of azimuthal wavenumber m=4�
was introduced into the Ro=1 initial condition, the flow re-
mained close to axisymmetric, with no leakage of energy
into the nonaxisymmetric modes. In short, the trajectory of
the flow is stable to small but finite nonaxisymmetric distur-
bances. Consequently, subsequent computations took advan-
tage of the assumed axial symmetry, with the number of
radial nodes set equal to 5000. The flow domain is spherical
with a radius of R set equal to 10
. This allowed the vortex
to undergo significant evolution without the effects of the
confinement becoming important. No-slip boundary condi-
tions were used in all calculations. Both cyclonic ���0� and
anticyclonic ���0� initial conditions were investigated,
with Ro ranging from 0.01 up to 5. It is convenient to define

Ro as �umax� /2�
, where umax is the maximum velocity at t
=0. For initial condition �19�, this gives

Ro = ���/2e� . �20�

B. The topology of the initial condition

Since D�̂ /Dt=0 in an inviscid fluid, the topology of the

�̂ lines must be conserved. Thus, whatever topology is built
in at t=0 is preserved throughout the simulation and this
imposes constraints on the way in which the flow can evolve.
The nature and consequences of these topological constraints
change with Ro, and so, before discussing the simulations, it

is useful to look at how the shape of the initial �̂ lines varies
with Ro. From Eqs. �19� and �20� we have

�̂ = �r2 � �2eRo��r2 �r2 + z2�1/2



exp�− �r2 + z2�/
2� . �21�

Consider first cyclonic initial conditions, corresponding
to the plus sign in Eq. �21�. Here it is readily confirmed that

there are two regimes. For Ro�1.388, the �̂ lines are topo-

logically equivalent to the unperturbed case, with all the �̂
lines unclosed. For Ro�1.388, however, an isolated region

of closed �̂ lines appears, as shown in Fig. 3. There is a local

maximum in �̂ at the center of the island and a saddle point
to the right. The width of the island can be shown to grow
approximately as �0.61
 ln�Ro /1.388�. The main signifi-

cance of the appearance of this region of closed �̂ lines is

that, to the right of the local maximum in �̂, there is a region

in which ��̂2 /�r�0. We might expect, therefore, that Ro
=1.388 heralds the beginning of the transition from columnar
vortex formation to the radial bursting of the vortex.

The case of anticyclonic initial conditions is slightly
more complicated. Here there are three regimes. For Ro

�0.377 the �̂ lines are all unclosed, topologically equivalent
to the unperturbed flow. However, for 0.377�Ro�0.429 an

island of closed �̂ lines appears, similar to that of the cy-

clonic case. There is a local maximum in �̂ at the center of
the island and a saddle point to the right. The width of the
island grows faster than that for cyclones, approximately as

�1.9
 ln�Ro /0.377�. As Ro increases, the value of the �̂ line

Ro = 1.0 Ro = 1.5 Ro = 2.0

FIG. 3. Lines of absolute angular momentum �̂ at t=0 for cyclonic initial
conditions. The contours are shown in the domain R /4.
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that encircles the island decreases until, at Ro=0.429, the

bounding �̂ line reaches a value of zero and connects to the
axis. We then enter a new regime in which we have two

regions of closed �̂ lines, both of which are topologically
connected to the axis of symmetry. The inner one encloses a

region of positive �̂ and has a local maximum in �̂ near its

center. Surrounding this, there is region of closed �̂ lines in

which �̂ is negative. This encloses a local minimum in �̂. In

both regions, we find ��̂2 /�r�0 �heavy fluid immersed in

lighter fluid� to the right of the local extremum in �̂. The
various regimes are shown in Fig. 4. Note that, as Ro in-

creases, the inner region of closed �̂ lines shrinks at the

expense of the outer region of negative �̂, and that by Ro
=0.8, the former has all but disappeared. So, for Ro�0.8,

the dominant region of potentially unstable fluid ���̂2 /�r

�0� lies between the minimum in �̂ and the bounding curve

�̂=0.

Since the topology of the �̂ lines is preserved for all
time, we might expect columnar anticyclones to emerge for
Ro�0.377, with a gradual transition to radial bursting as Ro
increases. Integrating

D

Dt

 �̂�

r
� =

�

�z

 �̂2

r4 � = � · ���̂2/r4�êz� , �22�

we find that, for anticyclonic initial conditions,

d

dt



z�0

�̂�

r
dV = 2�


0

�

���̂0
2 − ��r2�2�/r3�dr

=
e2

2
�2Ro
2�Ro −

2��

e
� , �23�

which is reminiscent of Eq. �12� for the nonrotating case.
Thus the mean azimuthal vorticity changes sign at Ro

=1.30, and we might anticipate that this heralds a change in
behavior. In particular, we would expect the radial velocity
on the symmetry plane to change from inward to outward,
marking the beginning of a tendency for the vortex to burst
radially outward. We shall see that this is indeed the case.

IV. THE BEHAVIOR OF ANTICYCLONIC
VORTICES

We now present the results of the numerical simulations,
starting with anticyclonic initial conditions. Noting that to-

pological changes in the initial distribution of �̂ occur at
Ro=0.377 and Ro=0.429 and that there is a change in the
sign of �z�0��� /r�dV at Ro=1.30, we might expect to pass
through several regimes as we move from small to large Ro.
In fact, we shall find it convenient to classify the results, at
least approximately, in terms of five ranges of Ro:

�1� Ro�0.38; here quasilinear inertial wave propagation
leads to a pair of columnar anticyclones, reminiscent of
the behavior at Ro→0.

�2� 0.38�Ro�0.43; in this case energy spreads predomi-
nantly along the rotation axis by inertial wave propaga-
tion, but the resulting columnar vortex is fundamentally
different in structure to that at lower Ro and this is a
result of the topological change that occurs at Ro
=0.377.

�3� 0.43�Ro�0.8; the vortex still elongates somewhat but
there is little wavelike motion, merely a gradual
nonoscillatory slide toward an elongated state.

�4� 0.8�Ro�1.6; there is little evidence of wave motion
but a direct competition develops between the confined
island of the heavy fluid, which pushes radially outward,
and the surrounding light fluid which tends to gravitate
toward the axis.

�5� Ro�1.6; the behavior is dominated by the island of
heavy fluid located near the axis, which bursts radially
outward, reminiscent of the behavior for Ro→�, as dis-
cussed in Sec. II B.

It is remarkable that the transition from columnar vortex
formation and radial bursting occurs for such a narrow range
of Ro, from 0.38 to 1.6.

Let us start with the range Ro�0.38. The evolution of
the poloidal kinetic energy Ep normalized by the initial ki-
netic energy in the rotating frame, E0, is shown in Fig. 5 for
Ro=0.01–0.7, along with contour plots of the azimuthal ki-
netic energy, 1

2u�
2, for the case Ro=0.08. It is clear that, as in

the low-Ro limit, the initial vortex blob splits to form a pair
of columnar vortices. In addition, there is some weak, off-
axis radiation of energy, which is also part of the low-Ro
solution. A similar behavior is seen for all Ro�0.37. More-
over, for Ro�0.35, the poloidal and azimuthal kinetic ener-
gies evolve to a state close to equipartition, Ep /E0�0.5,
which is indicative of wave motion. �We shall discuss the
behavior of Ep /E0 for Ro=0.4, 0.5, and 0.7 shortly.�

Let us now turn to the range 0.38�Ro�0.43. The con-

tour plots of absolute angular momentum �̂ are shown in Fig.
6 for Ro=0.4 at times �t=0.375, 2.5, and 3.25. It is clear
that, as for the regime Ro�0.38, the vortex elongates along

Ro = 0.33 Ro = 0.39 Ro = 0.43 Ro = 0.45 Ro = 0.50

Ro = 0.60 Ro = 0.80 Ro = 1.0 Ro = 1.2

FIG. 4. Lines of absolute angular momentum �̂ at t=0 for anticyclonic
initial conditions. Contours for the cases Ro=0.33–0.50 �top row� are re-
stricted to the domain R /10 and cases Ro=0.60–1.2 �bottom row� are
shown in the domain R /6. Light contours show positive values and dark
contours show negative values.
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the rotation axis. However, the structure of the columnar
vortex is fundamentally different. In particular, the topology

of the �̂ lines is conserved, so that the existence of an iso-

lated island of closed �̂ lines near the origin restricts the
degree to which the angular momentum can disperse. One
consequence of this is a residual region of � in the vicinity of
z=0, which is clearly visible in Fig. 6 yet absent in Fig. 5.
This restricted dispersion of angular momentum is reflected
in the energy curves Ep /E0 shown in Fig. 5�a�. Here the
curve for Ro=0.4 drops below equipartition, indicating that
the angular momentum trapped near the origin cannot con-
tribute to wave motion.

Consider now the regime 0.43�Ro�0.8. This is char-

acterized by the emergence of two regions of closed �̂ lines,

an inner area of positive �̂ and an outer region of negative �̂.

The inner region contains a local maximum in �̂ and the

outer area contains a local minimum in �̂. Thus both regions

exhibit maxima in �̂2. As Ro increases, the inner region
shrinks at the expense of the outer one, and by Ro=0.8 the
former has all but disappeared �see Fig. 4�. The flow corre-
sponding to Ro=0.7 is shown in Fig. 7, where Fig. 7�a�
illustrates the contours of �̂, Fig. 7�b� the contours of 1

2u�
2,

and Fig. 7�c� the variation in ��̂ /�r on the symmetry plane.

Note that the main region of heavy fluid �large �̂2� surrounds

the local minimum in �̂. It is evident that the dominant mo-
tion is a gradual slide toward an elongated state as light fluid

pushes up toward the axis, with the local minimum in �̂
moving inward and the saddle points on the z axis moving
away from z=0. Clearly the region of heavy fluid is not yet
strong enough to burst radially outward. There is some evi-
dence of dispersion of energy by inertial waves in Fig. 7�b�,
but it is weaker than that shown in Figs. 5 and 6. The varia-
tions in Ep /E0 versus �t for Ro=0.5 and 0.7 are shown in
Fig. 5 and it is evident that progressively less energy is trans-
ferred to Ep as Ro increases, reflecting the diminished role of
inertial waves in redistributing energy.

Turning now to the regime 0.8�Ro�1.6, the behavior
becomes more complicated. There is now a direct competi-
tion between the heavy fluid, which lies between the local

minimum in �̂ and the bounding curve �̂=0, and the lighter
fluid surrounding it. The heavy fluid wants to burst radially
outward, while the light fluid tends to push up toward the

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Ro = 0.7

Ro = 0.01

Ω t = 3.25t = 2.5

(b)

(a)

Ωt = 1.25 ΩRo = 0.08;

Ep

E0

Ωt

FIG. 5. �Color online� Evolution of an anticyclone. �a� Normalized poloidal
kinetic energy, Ep /E0, vs �t for Ro=0.01, 0.08, 0.2, and 0.35 �solid lines
from top to bottom� and for Ro=0.4, 0.5, and 0.7 �dashed-dotted lines from
top to bottom�. �b� Shaded contours of azimuthal kinetic energy, 1

2u�
2, for

Ro=0.08 at �t=1.25, 2.5, and 3.25, shown for the restricted domain 2R /3.

Ω t = 2.50Ω Ω t = 3.25t = 0.375

FIG. 6. Flow corresponding to Ro=0.4 �anticyclonic initial condition�. Con-

tours of absolute angular momentum �̂ at different times, shown for the
restricted domain R /10.

0 1.0 2.0 3.0 4.0 5.0
−0.2

0

0.2

0.4

0.6

0.8

Ω t = 1.2Ω Ω t = 1.8 Ω t = 2.4

Ω
Ω

Ω

(a)

(b) (c)

t = 0
t = 3.3

t = 0.6

t = 3.3

∂Γ̂
∂r

r/δ

FIG. 7. �Color online� Flow for Ro=0.7 �anticyclonic initial condition�. �a�
Contours of �̂ for different times, shown for the restricted domain R /5.
Light contours show positive values and dark contours show negative val-
ues. �b� Contours of azimuthal kinetic energy, 1

2u�
2, at �t=3.3, shown for the

restricted domain R /3. �c� ��̂ /�r on the symmetry plane vs r /
 for �t=0
�thick solid line�, 1.2 �dashed line�, 2.4 �dashed-dotted line�, and 3.3 �thin
solid line�.
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axis. These two effects are finely balanced, as indicated by
the change in the sign of �z�0��� /r�dV at Ro=1.3. There is
little evidence of wave propagation in this regime. Contours

of �̂ show that the local minimum in �̂ �i.e., heavy fluid�
now moves radially outward, and that a radial front starts to
form, which is the first sign of burstinglike behavior. The
saddle points on the axis, on the other hand, continue to
move away from z=0 as light fluid sweeps up toward the
axis. This is illustrated in Fig. 8�a�, which shows the con-

tours of �̂ for Ro=1.4.
The formation of the front is evident from the plots of

���̂ /�r�z=0 shown in Fig. 8�b� for Ro=1, 1.4, and 1.8. It is
convenient to define the center of the front rf as the local

minimum in �̂, i.e., ���̂ /�r�z=0=0, and the characteristic

thickness of the front, 
 f, as the distance between the mini-

mum and maximum values of ���̂ /�r�z=0. Figure 9�a� shows
rf, normalized by its initial value, rf0, as a function of �t for
the range 0.7�Ro�2.0, while Fig. 9�b� shows the front
thickness 
 f as a function of t /�, where � is the initial turn-
over time of the eddy, 
 /umax,0. Evidently, the location of

�̂min moves inward for Ro=0.7 but outward for Ro�1, as
suggested above. Moreover, the continual thinning of the
front for Ro�1 is clearly evident in Fig. 9�b�. Note, how-

ever, that for Ro�1.6, the front thins by ���̂ /�r�min moving

outward and ���̂ /�r�max moving inward, whereas for

Ro�1.6, the front thins with both ���̂ /�r�min and ���̂ /�r�max

moving outward, which is characteristic of a bursting vortex
in the absence of rotation.9

Finally, we consider the regime Ro�1.6. This is charac-
terized by an island of heavy fluid bursting radially outward,
reminiscent of the case of Ro→� discussed in Sec. II B. In

this regime the location of �̂min moves outward while the
saddle points on the axis converge toward z=0. The case of

Ro=2.0 is illustrated in Fig. 10, where the contours of �̂ are

shown in Fig. 10�a� and ���̂ /�r�z=0 is shown in Fig. 10�b�.
Note from Fig. 9�b� that the front thins exponentially fast for
Ro�1.4, which is the hallmark of the radial bursting of a
vortex in the absence of background rotation.9

In summary, then, for Ro�0.4, an anticyclonic eddy
forms a pair of columnar vortices via inertial wave propaga-
tion, essentially in the same manner as the linear, low-Ro
regime. Conversely, for Ro�1.6, the same vortex bursts ra-
dially outward under the action of the centrifugal force, with
the background rotation playing almost no role. The interme-
diate behavior is quite intricate, but perhaps this is of less
interest. The more important point is that there is a rapid
transition from one regime to the other at around Ro�1.

V. THE BEHAVIOR OF CYCLONIC VORTICES

Let us now consider the case of cyclonic vortices. We
expect the transition from columnar vortex formation to ra-
dial bursting to be more straightforward here as there is only

one topological change in the initial �̂ field, which occurs at

Ro=1.39. For Ro�1.39, the �̂ lines are unclosed and topo-
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(b)
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∂Γ̂
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∂Γ̂
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∂Γ̂
∂r

r/δ r/δ r/δ

FIG. 8. �a� Contours of the absolute angular momentum �̂ for anticyclonic
initial conditions and Ro=1.4, shown for different times in the restricted

domain R /5. �b� ��̂ /�r on the symmetry plane for anticyclonic initial con-
ditions. �i� Ro=1 and �t=0, 1.25, 2.5 �thick solid line, dashed line, thin
solid line�; �ii� Ro=1.4 and �t=0, 1.2, 1.8 �thick solid, dashed, thin solid�;
�iii� Ro=1.8 and �t=0, 1.0, 1.5 �thick solid, dashed, thin solid�.
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FIG. 9. Front position rf and front thickness 
 f for anticyclonic initial conditions. �a� rf /rf0 vs �t for different Rossby numbers shown. �b� ln�
 f� vs t /�. The
curves from top to bottom correspond to the cases Ro=0.7, 1.0 �in dashed lines� and Ro=1.4, 1.6, 1.8, 2.0, 3.0 �in solid lines�.
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logically equivalent to the unperturbed case, so we might
expect columnar vortex formation via quasilinear inertial

wave propagation. For Ro�1.39, an island of closed �̂ lines

forms, enclosing a local maximum in �̂, which tends to drive
the fluid radially outward. We shall see that quasilinear co-
lumnar vortex formation does indeed occur for Ro�1.39,
while radial bursting is the dominant behavior for Ro�3.
For intermediate values of Ro there is evidence of both types
of behavior.

Figure 11 shows the azimuthal energy density, 1
2u�

2, for
the cases Ro=1, 2, 3, and 4 at �t=2.5, 1.0, 0.8, and 0.5

respectively. It is clear that the dominant behavior for Ro
=1 is axial wave propagation, while radial bursting domi-
nates for Ro=3 and 4. The intermediate case of Ro=2 ex-
hibits mixed behavior, with some dispersion of energy by
waves, as well as elements of radial bursting. Figure 12

shows the evolution of ���̂ /�r�z=0 for the same four values of
Ro. The formation of the radial front is evident for Ro=3 and
4, there is no front for Ro=1, and the behavior at Ro=2 is
more complex, with some evidence of a radial front forming.
Finally, Fig. 13 shows 
 f versus t /�, where � is the initial
turn-over time. It is clear that the front thins exponentially
fast for Ro�3, which is characteristic of the radial bursting
of a vortex in the absence of background rotation. For Ro
=2, the front initially thins exponentially fast, but there is a
change in behavior at around t /�=3.4.

VI. DISCUSSION

The precise details of the transition from columnar vor-
tex formation to centrifugal bursting is, perhaps, not so im-
portant as it depends partly on the particular initial condi-
tions under consideration. The more important observation is
that “potentially unstable” regions �i.e., heavy fluid lying
within light fluid� develop at lower values of Ro for anticy-

clones than for cyclones. It is these regions, where ��̂2 /�r
�0, which ultimately drives the centrifugal bursting of a
vortex. This is evident from a comparison of Figs. 3 and 4:
anticyclonic vortices very quickly develop a substantial re-

gion of negative �̂, which then feeds the radial bursting of
the vortex. Cyclonic initial conditions, on the other hand,
require significantly higher values of Ro before small islands

of closed �̂ lines appear. Moreover, this phenomenon is not
peculiar to the particular initial condition chosen here. It is
readily confirmed that almost any simple localized region of
vorticity exhibits the same asymmetry between cyclones and

anticyclones. The reason is as follows: ��̂2 /�r=2�̂r�2�

+�z�, and regions of negative ��̂2 /�r first appear when
�2�+�z�=0. For an anticyclone, this occurs near the axis of
symmetry where �z is negative and ��z� is relatively intense
�Fig. 14�b��. For cyclones, on the other hand, this occurs at
the outer edge of the vortex where ��z� is less intense as the
vortex lines are more spread out �Fig. 14�a��. Thus �2�
+�z�=0 occurs at significantly lower values of Ro for anti-
cyclones. Note that this argument holds for any axisymmet-
ric vortex blob in which the angular velocity, u� /r, mono-
tonically falls with r. In all such cases we expect to see an
asymmetry between cyclones and anticyclones, with anticy-
clones exhibiting a lower transitional value of Ro.

This is illustrated in Fig. 15, where the �̂ lines for cy-
clonic and anticyclonic vortices are shown corresponding to
the different initial condition

u = �r exp�− �r2 + z2�/
2�ê�. �24�

As for Eq. �19�, regions of negative ��̂2 /�r develop rap-
idly for anticyclonic initial conditions but less rapidly for

cyclones. In this case, ��̂2 /�r first becomes negative at Ro
=0.214 for anticyclones but at Ro=1.58 for cyclones. The
ratio of the two values of Ro is 7.39. Thus we expect a
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∂Γ̂
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FIG. 10. Flow for anticyclonic initial conditions and Ro=2.0. �a� Contours

of �̂ at �t=0.5, 0.875, and 1.25, shown for the restricted domain R /3. �b�
��̂ /�r on the symmetry plane at �t=0.0, 0.875, and 1.25 �thick solid line,
dashed line, thin solid line�.

Ro = 1.0 Ro = 2.0 Ro = 3.0 Ro = 4.0

FIG. 11. �Color online� Azimuthal energy density for cyclonic initial con-
ditions shown for the restricted domain R /2. The cases presented are
Ro=1.0, �t=2.5; Ro=2.0, �t=1.0; Ro=3.0, �t=0.8; Ro=4.0, �t=0.5.
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substantial difference in the value of Ro at which the transi-
tion from columnar vortex formation to radial bursting oc-
curs. It is readily confirmed that a similar picture emerges if,
instead of a Gaussian falloff in r, we choose, say, u� /r
=sech2�r /
� on the symmetry plane z=0. The transitional
values of Ro are different, but the qualitative picture remains
unchanged.

Let us now return to the sort of experiment discussed in
Refs. 2 and 3 where eddies �blobs of vorticity� are created by
dragging a grid through a tank of water at Ro�1. With time
the Rossby number falls �kinetic energy decays� and when
the Rossby number falls to �1, it is observed that many of

the eddies start to elongate along the rotation axis, forming
columnar vortices. Measurements of their rate of growth
confirm that the mechanism of elongation is essentially qua-
silinear inertial wave propagation, and it is usually observed
that the bulk of the resulting columnar vortices are cyclonic.
These observations are entirely consistent with the picture
suggested above. As Ro falls it is the cyclonic eddies that
first become prone to columnar vortex formation. Anticy-
clonic vortices, on the other hand, require a substantially
lower value of Ro in order to produce columnar structures.
While this does not prove that the mechanism described here
is the mechanism responsible for the dominance of cyclones,
it is certainly consistent with the experimental observations.
Moreover, our explanation is more in line with the experi-
mental data than that of Gence and Frick,8 which relies on a
very special initial condition.

0 1.0 2.0 3.0 4.0 5.0 6.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0 1.0 2.0 3.0 4.0 5.0 6.0
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1.0 2.0 3.0 4.0 5.0 6.0
−0.4

−0.3

−0.2

−0.1

−0

0.1

0.2

0.3

0.4

0.5

0 1.0 2.0 3.0 4.0 5.0 6.0
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Ro = 2.0

Ro = 3.0 Ro = 4.0

(a)

(c) (d)

(b)

Ro = 1.0

∂Γ̂
∂r

∂Γ̂
∂r

∂Γ̂
∂r

∂Γ̂
∂r

r/δ r/δ

r/δr/δ

FIG. 12. The evolution of ��̂ /�r on the symmetry plane z=0 for cyclonic initial conditions: �a� Ro=1.0 for �t=0 �thick solid line�, 0.5 �dashed line�, and 0.75
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FIG. 14. Poloidal vortex lines, �p, at t=0 for �a� a cyclonic vortex and �b�
an anticyclonic vortex.
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VII. CONCLUSION

We have looked at the process of columnar vortex for-
mation in a rotating fluid and shown that, when Ro�1, cy-
clonic eddies are more likely to form columnar structures
than anticyclonic eddies. Although the numerical simulations
were for a particular class of initial conditions, we have
shown that the primary conclusions are likely to hold for any
simple, axisymmetric vortex. The relationship between our
findings and the observation that cyclones predominate in
rapidly rotating turbulence is uncertain since our model
problem is somewhat idealized. Nevertheless, our findings

are consistent with the experiments on homogeneous turbu-
lence.
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FIG. 15. �a� Contours of absolute angular momentum �̂ at t=0 for a cy-
clonic vortex corresponding to Eq. �24�. The plots are restricted to the do-

main R /4. �b� Contours of �̂ at t=0 for an anticyclonic vortex corresponding
to Eq. �24�. The plots are restricted to the domain R /15. Light contours
show positive values and dark contours show negative values.
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