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We consider the magnetic damping of surface gravity waves by a vertical magnetic field. The
damping mechanism is, in principle, quite simple. The motion of a conducting fluid in the presence
of an imposed magnetic field leads to electric currents, and hence to Ohmic dissipation. As the fluid
heats up, there is a corresponding loss in the mechanical energy of the wave motion. When the fluid
is infinite in the horizontal plane, or else bounded by perfectly conducting vertical walls, the induced
currents have a simple spatial distribution and so the analysis of such waves is straightforward �L.
E. Franekel, J. Fluid. Mech. 7, 81 �1959�; P. Rivat, J. Etay, and M. Garnier, Eur. J. Mech. B/Fluids
10, 537 �1991��. However, in most practical applications of magnetic damping the fluid is bounded
by nonconducting vertical walls. This leads to a complex distribution of electric currents and to a
much weaker form of damping. In this paper, we extend the simple classical theory to accommodate
nonconducting sidewalls, and show that the characteristic damping time increases by a factor of
�30 due to the presence of these walls. Experiments are described for both conducting and
insulating sidewalls. The results of the experiments are in good agreement with the theory.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2118708�
I. INTRODUCTION

A. The damping of motion by an imposed magnetic
field

Magnetic fields are commonly used to suppress un-
wanted motion in electrically conducting fluids, for example,
in continuous casting of steel and aluminum; see Davidson.1

The mechanism is straightforward. Let B0 be a uniform mag-
netic field that is imposed on an incompressible fluid. The
magnetic Reynolds number, Rm=ul /�, is invariably small in
such applications, and so Ohm’s law and the Lorentz force
experienced by the fluid simplify to �Davidson2�

J = ��− �V + u � B0� , �1�

F = J � B0. �2�

Here � and � are the electrical conductivity and magnetic
diffusivity of the fluid, u is the velocity field, and J is the
induced current density. Both J and u are solenoidal. Also, V
is the electrostatic potential, which is determined by the di-
vergence of Eq. �1� in the form

�2V = B0 · �, � = � � u . �3�

It follows that the Lorentz force is given by

F = ��B0 � �V� − �B0
2u�, �4�

where u� represents the components of u in the plane nor-

mal to B0. We shall return to Eq. �4� in a moment. First, let
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us consider the rate of working of F. From Eqs. �1� and �2�,
we have

F · u = u · �J � B0� = − J2/� − � · �JV� . �5�

The second term on the right-hand side of �5� is a divergence
that usually integrates to zero, provided there is no external
source of current. Thus, we have

� F · u dV = −� J2/� dV , �6�

which represents the conversion of mechanical energy into
heat at a rate determined by the Ohmic dissipation. To deter-
mine the characteristic time scale of the process, we must
return to Eq. �4�. The analysis simplifies considerably in
those cases where the motion is two dimensional, such as a
plane wave, and when B0 lies in the plane of the motion. In
such a situation, �3� reduces to �2V=0, and provided the
fluid is unbounded, or else bounded by perfectly conducting
walls that provide a resistance-free return path for the in-
duced current, we may take V=0. Under these conditions,
Eqs. �1� and �4� simplify to

J = ��u � B0� , �7�

F = − �B0
2u�, �8�

and we see that the Lorentz force acts like a linear drag

acting on u�. The Navier–Stokes equation now becomes

© 2005 American Institute of Physics1-1
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Du

Dt
= − �� p

�
� −

u�

�
+ � �2u , �9�

where �=� /�B0
2 is called the magnetic damping time. For

those special cases in which V=0, � provides the appropriate
time scale for the conversion of mechanical energy into heat.

An obvious application of �9� is the magnetic damping
of plane gravity waves propagating on the surface of a pool
of conducting fluid �for example, a liquid metal�. In those
cases where B0 is vertical and the pool is unbounded in the
horizontal plane, V is zero and �7�–�9� apply. The determina-
tion of the corresponding wave motion is straightforward for
small-amplitude waves and is documented in, for example,

Fraenkel,3 Rivat et al.,4 and Shishkov.5 We recall the analysis
here, partly to place the subsequent work in context, and
partly to introduce some notation.

B. Damping of a gravity wave on an infinite surface:
The classical theory

Consider a pool of liquid metal bounded below by the
surface y=−h and with an unperturbed free surface at y=0,
as shown in Fig. 1. We allow for small-amplitude plane
waves whose wave vector is in the x direction, so that the
velocity field is confined to the x−y plane. The fluid is
threaded by a uniform, vertical magnetic field, B0, and for
simplicity we neglect viscous and surface tension forces. The
linearized version of Eq. �9� for small-amplitude waves is

�u

�t
= − ���p

�
� −

uxêx

�
, �10�

where �p is the perturbation in pressure from the hydrostatic
distribution. We let ��x , t� be the vertical displacement of the
free surface and seek solutions of the form

� = �0 exp j�kx + 	t� ,

uy = H�y� exp j�kx + 	t� ,

�p = �
�y� exp j�kx + 	t� ,

where k and 	 are the wave number and angular frequency.
It is readily confirmed that H�y� and 
�y� satisfy the linear-
ized boundary conditions

FIG. 1. A plane wave is damped by a magnetic field. The fluid is considered
unbounded in the horizontal plane and the induced electric current is di-
rected parallel to the wave crests.
H�0� = j	�0, H�− h� = 0, �11�
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�0� = g�0, �12�

which correspond to uy�y=0�=�� /�t, uy�y=−h�=0, and
�p�y=0�=�g�. The divergence of Eq. �10� gives

�2��p/�� = −
1

�

�ux

�x
=

1

�

�uy

�y
, �13�

from which


��y� − k2
 =
1

�
H��y�

while the vertical component of �10� requires

j	H = − 
��y� . �14�

Combining these expressions provides the governing equa-
tion for 
:


� − �2
 = 0, �15�

where

�2 = k2 j

N + j
�16�

and

N =
1

	�
=

�B0
2

�	
. �17�

The quantity N is usually referred to as the interaction pa-
rameter. Finally, we solve Eq. �15� for 
, use �14� to find H,
and impose boundary conditions �11� and �12�. The end re-
sult is the dispersion relationship

	2 = �g tanh �h . �18�

Some obvious special cases arise. For example, when N=0
�no magnetic field�, we recover the familiar expression

	0
2 = kg tanh kh �19�

while the shallow-water limit of �18� gives

	 = j/2� ± 		0
2 − �2��−2. �20�

Evidently, the wave is damped out on a time scale of �, as
anticipated earlier, and becomes critically damped when
	0�=1/2. More generally, the solution of �18� as a function
of N0= �	0��−1 is shown in Fig. 2. We shall return to the
dispersion relation �18� later, where we shall see that its pre-
dictions are in close agreement with experiment. However,
the important point to note for the moment is that �18� was
derived on the assumption that V=0, and this in turn requires
that the free surface is infinite in extent or else the fluid is
bounded by perfectly conducting vertical walls that allow the
induced current

J = �uxB0êz �21�

to recirculate within the walls, as shown in Fig. 3. In prac-
tice, however, the more common situation is where the ver-
tical walls are electrically insulating, and in such a situation
the current paths must close within the fluid. Evidently, the
electric field −�V is nonzero in such a case and the analysis

above is inadequate. One of our goals in this paper is to
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determine the manner in which the current paths close within
the fluid when the walls are insulating, and thus find the
associated damping time, td. We shall see that, in such cases,
the damping time no longer scales as td��, but rather as

FIG. 2. Real and imaginary parts of the frequency determined by �18� as a
function of the magnetic interaction parameter, N0, shown for different val-
ues of the parameter kh. The roots of the characteristic equation in the
region of 	r=0 are shown dotted. Note that for moderate depths �kh
=0.6,1.2�, 	i /	0 is approximately linear in N0, which is equivalent to a
damping time proportional to �.

FIG. 3. When the fluid is enclosed by perfectly conducting walls, the prob-
lem is essentially that shown in Fig. 1 since the induced current is recircu-
lated within the sidewalls and no voltage is required to drive the current
through the walls. The main effect of the boundaries is to determine the

wave number, k.
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td =
A�

f�Ha�
, �22�

where Ha is the Hartmann number based on the pool
width, w,

Ha = ��B0
2w2

��
�1/2

= �w2

��
�1/2

, �23�

and f is a function of Ha, which tends to unity for large Ha.
The coefficient A depends on the width, depth, and wave-
length of the wave, and is typically of order 50. In the fol-
lowing section, we will demonstrate that, in the shallow-
water limit, �22� contains no adjustable coefficients. We shall
show that �22� is in close agreement with the experimental
data.

II. THE CASE OF NONCONDUCTING WALLS

Let us suppose that the fluid is contained between insu-
lating walls separated by distances L and w, as shown in Fig.
4. As before, the unperturbed fluid depth is h and we con-
sider small-amplitude waves in which surface tension forces
are neglected. To focus thoughts we consider the fundamen-
tal mode, k=� /L, although the analysis extends in an obvi-
ous way to any standing wave. �All our experiments corre-
spond to the fundamental mode.� The coordinate system is
that shown in Fig. 1. Since V is nonzero for electrically in-
sulating walls, we must generalize the analysis of Sec. I B to
allow for a nonzero electric field.

Let us start with the simplest case where viscous forces
may be neglected, the pool is shallow, and Ha is small. �We
shall incorporate the effects of a finite viscosity, pool depth,
and Ha later.� We have

�
�u

�t
= − ��p + F , �24�

where F is given by Eq. �4�. Now one of the curious features
of �4� is that the electric potential V does not enter into the
divergence of F. That is to say, taking the divergence of �4�

FIG. 4. Wave motion and induced current in an insulating box.
yields
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� · F = − ��/�� � · u� = ��/���uy/�y ,

which is independent of V. So, in the core, �p and uy are
governed by

�2��p

�
� =

1

�

�uy

�y
, �25�

�uy

�t
= −

�

�y
��p

�
� . �26�

These may be rewritten as second-order equations for �p
and uy:

�

�t
�2��p

�
� = −

1

�

�2

�y2��p

�
� , �27�

�

�t
�2uy = −

1

�

�2uy

�y2 . �28�

At this point it is natural to look for plane-wave solutions of
the type discussed in Sec. I B. However, plane-wave solu-
tions of �25� and �26�, subject to boundary conditions �11�
and �12�, lead to exactly the same dispersion relationship as
before, and hence to waves that are damped out on a time
scale of td��. Yet we know from the experiments �described
in Sec. IV� that the damping time for waves in an insulating
box is an order of magnitude greater than �. Thus we are led
to the surprising conclusion that simple plane-wave solutions
are not observed when the walls are nonconducting. To ex-
plain this phenomenon, we must first determine the manner
in which the current paths close within the fluid.

The simplest case to analyze is the weak-field, shallow-
water limit, and so we start with this. Here ux is independent
of depth to leading order in kh and can be written as ux

=u0�t�cos��x /L�. From �3�, we have �2V=0 and the bound-
ary condition J·n=0 demands

�V
= u0B0 cos��x/L�, z = ± w/2;
�z
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�V

�x
= 0, x = ± L/2.

The solution for V is

V

u0B0
=

2z

�
−

4

�


n=1



�− 1�n

�2n�2 − 1

sinh�knz�cos�knx�
kn cosh�knw/2�

, �29�

where kn=2n� /L. �It is readily confirmed that �29� satisfies
Laplace’s equation and the boundary conditions.� The corre-
sponding current distribution can be found from Eq. �1� and
used to calculate the net Ohmic dissipation. It turns out to be

DJ =� �J2/��dV =
1

2
�B0

2uo
2�Lwh�

�� 4

�
�2



n=1



1

��2n�2 − 1�2�1 −
tanh pn

pn
� ,

�30�

where pn=n�w /L. This may be compared with the equiva-
lent result for perfectly conducting walls,

DJ
* =� �J2/��dV =

1

2
�B0

2uo
2�Lwh� ,

from which we conclude that the Joule dissipation is reduced
by a factor of

DJ

DJ
* = � 4

�
�2



n=1



1

��2n�2 − 1�2�1 −
tanh pn

pn
� . �31�

Now, for a weakly damped system whose amplitude decays
as exp�−t / td�, we have

2

td
=

Dissipation averaged over a cycle

Total energy during the cycle
. �32�

Moreover, td=2� for perfectly conducting walls in the

FIG. 5. Schematic of the experiment
where a standing wave is generated in
the presence of a vertical magnetic
field, with the box cross section shown
on the right. L=150 mm, w=40 mm.
shallow-water limit. It follows that, for nonconducting walls,
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�

td
=

1

2
� 4

�
�2



n=1



1

��2n�2 − 1�2�1 −
tanh pn

pn
� . �33�

Let us write this as td=A0�, where A0 is a function of w /L
only. In our experiment, where w /L=4/15, we find A0=53.
This large value of A0 is a little surprising, but it arises from
the fact that the magnitude of J is considerably reduced
when the current is forced to return within the fluid. Now,
Eq. �33� applies only in the weak-field, shallow-water limit.
For strong damping the velocity field is no longer harmonic
and so we cannot justify the assumption that ux

�cos��x /L�. However, the damping in our experiments is
usually weak for nonconducting walls, largely because A0 is
large. Thus, we might expect �33� to apply even at moderate-
to high-field strengths. Equation �33� is not a good approxi-
mation, however, if we move outside the shallow-water limit.
This is because DJ is a function of ux only, while the kinetic
energy has contributions from both ux and uy. As we move
away from the shallow-water limit the relative contribution
from uy rises and, hence, because of �32�, td also increases.
To allow for this we write

td = A�kh,w/L�� = CdA0�w/L�� , �34�

where A0 is given by �33�. The coefficient Cd is equal to
unity in the shallow-water limit and, from the discussion
above, it is expected to rise monotonically with depth as we
move towards the deep-water limit.

It remains to incorporate the effects of viscosity. There
are two kinds of boundary layers to be considered: the con-
ventional viscous layers on the sidewalls and the Hartmann
layer on the base. Consider first the side layers. Since these
are thin we may assume that, at any one location, the x
dependence of the core velocity is unimportant and so the
side layers may be approximated by the model problem in
which a uniform flow oscillates over the boundary. That is to
say ux=u�z�exp�j	t�, where u�z� is constant and equal to u


away from the boundaries. The corresponding boundary
layer thickness is �	=	2� /	 and the dissipation per unit
area of the boundary layer, averaged over a cycle, is readily
shown to be
FIG. 7. Measured evolution of the surface perturbation �mm� for N0=
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D	 = 1
2��u


2 /�	. �35�

The Hartmann layer on the base of the pool is a combination
of a conventional Hartmann layer and the oscillating bound-
ary layer described above. Since this layer is very thin, we
may once again use the approximation of a uniform flow
oscillating over the boundary. The governing equation is then

�ux

�t
= −

ux

�
+ �

�2ux

�y2 ,

which yields a boundary layer thickness of

� = ��H
−4 + 4�	

−4�1/4,

where �H=	�� is the conventional Hartmann layer thickness.
�See, for example, Muller and Buhler.6� It is readily con-
firmed that the dissipation per unit area of this Hartmann
layer is, averaged over a cycle,

FIG. 6. Amplitude of the surface wave �mm� as a function of time �s� for
N0=0.17, measured in a cavity with electrically conducting �copper� walls.
The downward spike corresponds to the point when the box is displaced for
the creation of the wave.
1.60 �left� and N0=2.2 �right� in an electrically conducting box.

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



117101-6 Sreenivasan, Davidson, and Etay Phys. Fluids 17, 117101 �2005�
DH =
��u


2

2	2�H

�1 + �1 + �	��2�1/2�1/2. �36�

From Eqs. �30�, �35�, and �36�, we can estimate the total
dissipation averaged over a cycle in the shallow-water limit.
On substituting into �32�, we then obtain the corresponding
value of td. We find

�

td
=

1

A0
+

Re1/2

	2Ha2
+

w

2	2h

�1 + �1 + �	��2�1/2�1/2

Ha
, �37�

where Re=w2	 /�. The terms on the right-hand side corre-
spond to bulk Ohmic dissipation, viscous sidewall dissipa-
tion, and Hartmann layer dissipation, respectively. At high

FIG. 8. A comparison of the experimentally obtained magnetic damping
times �normalized with respect to the natural period of oscillation in the
absence of a magnetic field, t0� for an electrically conducting box, with the
theoretical estimate �18�. The fluid depth is h=0.03 m, and k=20.9 m−1. The
dotted line corresponds to the region where the wave is arrested by the
magnetic field �no oscillations�. Note that N0= �	0��−1.

FIG. 9. Measured magnetic damping times normalized with respect to the
natural time of oscillation when B0=0, t0, plotted as a function of N0, for an

electrically insulating cavity.

Downloaded 01 Nov 2005 to 129.11.104.121. Redistribution subject to
Ha, which is typical of our experiments, the first term is
dominant.

III. THE EXPERIMENT

A schematic of the experimental setup is given in Fig. 5.
An open box of internal dimension 150�40�80 mm con-
tains mercury and sits in an imposed vertical magnetic field.

FIG. 10. Experimentally measured damping times �s� for insulating walls as
a function of the Hartmann number for �a� h=0.022 m, �b� h=0.035 m, and
�c� h=0.08 m. The superposed curves represent the relations obtained from
theory, with Cd=1 for h=0.02 and 0.035 m and Cd=2 for h=0.08 m.
Two different boxes are used. One is a box made of highly
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conducting copper, with wall thickness 10 mm, and the other
is made of electrically insulating Plexiglas �polymethyl
methacrylate�.

A standing wave is created at the free surface of the fluid
by imparting a horizontal �x� acceleration to the box by me-
chanical means against a vertical stop. The maximum angle,
�, that the free surface of the liquid makes with the horizon-
tal, is related to the acceleration imparted to the box, a, by
tan �=a /g. By controlling a /g, it was possible to ensure that
� remained small at all times.

The perturbations of the free surface are measured by an
optical displacement sensor. A 1 mJ, 670 nm �red� laser,
mounted approximately 200 mm from the free surface of the
fluid, shines a beam onto the surface. The reflected beam is
received by a position detector situated beside the laser
source, which converts the position data into the actual dis-
tance of the fluid surface from the sensor. This provides an
effective nonintrusive means of measuring free surface per-
turbations in an opaque fluid to a resolution of 0.01 mm. A
maximum sampling rate of 1000 s−1 ensures that a wave of
frequency �2 Hz, and other harmonics �if present�, are cap-
tured without aliasing errors.

IV. THE RESULTS

We shall first consider magnetic damping in an electri-
cally conducting box. Figure 6 shows surface oscillations �in
mm� for N0= �	0��−1=0.17 recorded in a 30 mm deep fluid
pool. The downward spike observed at t
6 s corresponds to
the instant when the box is subject to a horizontal impulse.
The wave soon settles down to a regular sinusoidal pattern.
Two seconds after the initial impulse, the surface displace-
ment has an exponentially decaying profile, enabling the
measurement of a decay time constant. In Fig. 7, the data
measured immediately after the wave is created are presented
for N0=1.6 and N0=2.2. The damping times decrease with
increasing N, signifying the dominant effect of Joule dissi-
pation, and when N0=2.2, the wave is brought to rest after
only three oscillations. A further increase of the field strength
results in total suppression of the wave �critical damping�.

Figure 8 compares the experimentally obtained damping
times with the theoretical solution �18� for the case h
=0.03 m, k=20.9 m−1 �kh
0.6�. The comparison is favor-
able. Note that the critical value of N0 at which 	r goes to

TABLE I. Table showing the typical magnetic fields, B0 �T� imposed on a
fluid layer of depth 35 mm in an electrically conducting box, the corre-
sponding interaction parameter, N0, the Hartmann number, Ha, and the mea-
sured damping time, td �s�.

B0 N0 Ha td �s�

0.158 0.17 164.0 6.0

0.32 0.69 330.95 3.0

0.40 1.09 415.96 1.8

0.49 1.60 503.96 1.0

0.57 2.20 590.95 0.8

0.595 2.40 617.22 
0
zero, is close to the theoretical value of 2.25.
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Figure 9 shows the damping time as a function of N0,
measured in an electrically insulating vessel. To achieve the
same damping times as those for a conducting vessel, the
interaction parameters needed are almost one order of mag-
nitude higher. Finally Fig. 10 shows the damping time td

plotted against Ha for the cases h=22 mm, h=35 mm, and
h=80 mm. �In the third case, h=80 mm, there was some
nonuniformity in the imposed magnetic field.� Note that h
=22 mm and h=35 mm are close to the shallow-water limit
�kh=0.46,0.73�, and so we may make a direct comparison
with the theoretical estimate �37�. The comparison is excel-
lent for the case h=35 mm, and reasonable for h=22 mm,
though it slightly underestimates the damping time for weak
fields. For h=80 mm, we are outside the shallow-water re-
gime and so we have replaced A0 in �37� with CdA0 in ac-
cordance with �34�. We expect Cd�1 and indeed taking Cd

=2 gives an excellent fit to the data.
Tables I–III give the typical values of the external mag-

netic field imposed on fluid layers in conducting and insulat-
ing cavities, the corresponding interaction parameters and
Hartmann numbers, and the measured damping times in
these experiments.

V. DISCUSSION

It is encouraging that the scaling predicted by Eq. �37� is
borne out by the experiments. The measurements made close
to the shallow-water limit �h=22 mm and h=35 mm� are
particularly important as the corresponding theoretical esti-

TABLE II. Table showing the range of operating parameters B0 �T�, N0, Ha,
and td �s� for the case of an electrically insulating box with a fluid layer of
depth 35 mm.

B0 N0 Ha td �s�

0.252 0.43 261.55 6.0

0.35 0.83 363.26 4.47

0.475 1.53 493.0 2.9

0.65 2.87 674.63 1.7

0.96 6.26 996.38 0.9

1.20 9.78 1245.48 0.4

1.30 11.47 1349.27 
0

TABLE III. Table showing the range of operating parameters B0 �T�, N0,
Ha, and td �s� in an electrically insulating box with a fluid layer of depth
80 mm.

B0 N0 Ha td �s�

0.136 0.107 143.56 22.99

0.204 0.241 215.34 16.22

0.272 0.429 287.12 13.07

0.340 0.670 358.90 9.62

0.408 0.964 430.68 6.55

0.476 1.313 502.46 5.84

0.544 1.715 574.24 4.49

0.612 2.170 646.03 3.90

0.680 2.679 717.81 3.21
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mate of td contains no adjustable parameter, so the close
correspondence with theory provides convincing proof that
Eq. �37� is correct.

From a practical point of view, the important point is
that, when the container walls are insulating, the time scale
for magnetic damping is no longer �, but rather an order of
magnitude higher. This is important since insulating walls
represent the most common situation in metallurgical
applications.
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