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Virtual Hyperspectral Images Using Symmetric
Autoencoders

Archisman Bhattacharjee, Pawan Bharadwaj, Laurent Demanet

Abstract—Spectral data acquired through remote sensing are
invaluable for environmental and resource studies. However,
these datasets are often marred by nuisance phenomena such
as atmospheric interference and other complexities, which pose
significant challenges for accurate analysis. We show that an au-
toencoder architecture, called symmetric autoencoder (SymAE),
which leverages symmetry under reordering the pixels, can
learn to disentangle the influence of these nuisance from surface
reflectance features on a pixel-by-pixel basis. This disentangle-
ment provides an alternative to atmospheric correction, without
relying on radiative transfer modeling, through a purely data-
driven process. More importantly, SymAE can generate virtual
hyperspectral images by manipulating the nuisance effects of each
pixel. We demonstrate using AVIRIS instrument data that these
virtual images are valuable for subsequent image analysis tasks.
We also show SymAE’s ability to extract intra-class invariant
features, which is very useful in clustering and classification tasks,
delivering state-of-the-art classification performance for a purely
spectral method.

Index Terms—autoencoders, atmospheric corrections, hyper-
spectral imaging, nuisances, redatuming, virtual images, hyper-
spectral image classification

I. INTRODUCTION

Complications due to nuisance or uninteresting parameters
arise in many inverse problems. In remote sensing of the
Earth’s surface, nuisance effects could be associated with
atmospheric effects, sensor noise, sun-angle variations, topo-
graphic effects, spatial intra-class variations, spectral mixing,
and instrumental and data artifacts [1], [2]. The presence
of such nuisance can make the inference of useful surface
reflectance features highly uncertain.

Therefore, dealing with these nuisance effects is seen as a
critical pre-processing step. In this note, we demonstrate the
utility of an autoencoder [3], [4] architecture, called the sym-
metric autoencoder [5, SymAE], to uniformize the nuisance
effects in hyperspectral images. To illustrate this, envisage a
collection of pixels belonging to a specific class. Among these,
certain pixels might be obscured by cloud cover, while others
enjoy the clarity of an unobstructed sky. Through SymAE’s
process of redatuming, nuisances can be transposed from one
pixel to another, effectively generating virtual pixel spectra.
These synthesized pixels can be systematically manipulated to
simulate either cloudless or cloudy conditions — effectively

Manuscript received on 26th September, 2023; (Corresponding author:
Archisman Bhattacharjee.)

Archisman Bhattacharjee and Pawan Bharadwaj are with Centre for Earth
Sciences, Indian Institute of Science, Bangalore, India.

Laurent Demanet is with Dept. of Mathematics and Earth Resources
Laboratory, Massachusetts Institute of Technology, Cambridge, USA.
(e-mail: archismanb1999@gmail.com; pawan@iisc.ac.in; ldemanet@mit.edu)

aligning pixels in terms of their nuisance effects as shown in
Fig. 1.

Our approach holds significant potential for applications
such as mineral characterization, land cover identification, and
hyperspectral signature analysis. It becomes especially valu-
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Fig. 1. Example from the Kennedy Space Center dataset. (a) Orig-
inal spectra in the dataset belonging to Oak Hammock vegetation
class. These pixel spectra showcase dissimilarities possibly arising
from nuisance effects like atmospheric or ground-based variations.
(b) The raw spectra undergo the redatuming process to generate
virtual spectra, as depicted here. Through redatuming, the spectra
share nuisance effects, leading to uniformity among spectra while
preserving vegetation-class-specific reflectance features. In the sub-
sequent examples presented in this paper, we employ band indices
to annotate the x-axis of the spectra, consistent with standard remote
sensing datasets where the wavelength of radiation is well understood.
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able when dealing with classes exhibiting subtle differences
that are muddled by the variance introduced by nuisance ef-
fects. Ultimately, our experiments demonstrate that employing
this architecture enables us to achieve hyperspectral image
(HSI) classification performance comparable to that of other
state-of-the-art networks and outperforming them for a purely
spectral method.

SymAE constitutes an encoder that provides a compressed
latent representation of the input hyperspectral image on a
pixel-by-pixel basis and a decoder that reconstructs the input
in a near-lossless manner. The latent representation of this
autoencoder is valuable because each at-sensor pixel spec-
trum is decomposed into two components (dimensions): one
correlated to nuisance parameters and another to the surface
reflectance features. Specifically, a disentangled representation
can be used to manipulate the nuisance information of the
pixels, e.g., the swapping of the atmospheric effects of a
given pixel with another. As will be discussed later, swapping
nuisance effects is equivalent to decoding a hybrid latent code
prepared by mixing components of the latent code between
the respective pixels. Consequently, the atmospheric effects
can be uniformized across the pixels, producing a new virtual
hyperspectral image. It should be crucially emphasized that
the SymAE executes the aforementioned decomposition in a
model-free manner, excluding the need for atmospheric radi-
ation transfer models that typically demand prior information
about nuisance parameters — examples being aerosols, gases,
clouds, and water vapor distribution. Virtual hyperspectral
images can be of several uses:

• as redatuming can be seen as an alternative to atmospheric
correction, virtual images can be useful in environments
where physical models of the atmosphere have high
uncertainties;

• better image processing tasks such as classification, seg-
mentation, etc. can be performed on virtual images with
uniformized nuisance effects;

• virtual hyperspectral images enable scenario analysis,
i.e., simulating the spectra under different atmospheric
or nuisance conditions enabling more accurate surface
characterization.

Traditional autoencoding ideas alone will not guarantee
that the surface reflectance features and nuisance features
of an input spectrum are encoded as separate components
in the latent space. To accomplish data-driven representation
learning, we harness the property of permutation invariance
found in surface reflectance of pixels with common features.
In other words, when examining a group or a cluster of pixels
within extensive remote-sensing datasets, possessing identical
surface-reflectance information — this information remains
unaffected by the arrangement or the ordering of pixels
within this group. Specifically, we capitalize on grouping
the observed spectra a priori to structure the latent space.
The identification of these groups is application-specific, and
some ideas are discussed in Section II. Finally, the latent
representation of the SymAE is guided by specific constraints
linked to these grouped spectra, encompassing:

• Firstly, the surface-reflectance characteristics within a

particular group exhibit symmetry concerning the ar-
rangement of its spectra. In essence, the surface reflection
information is assumed to be coherently shared across the
spectra within the group.

• Secondly, the nuisances across the spectra within a given
group are distinct, i.e., each spectrum experiences a
distinct unwanted alteration, influenced by corresponding
nuisance phenomena. For example, we assume that the
pixels within a group contain effects due to diverse
atmospheric configurations.

These constraints collectively steer SymAE’s learning process,
facilitating the creation of a latent representation that captures
the essential features while accounting for the complexities
introduced by nuisances. SymAE training is a highly gen-
eralized form of blind deconvolution that uses the merging
of different latent variables in a neural network to replace
the notion of convolution. The architectural design choices
of SymAE, which are made to ensure that the constraints
mentioned above are satisfied, are detailed in [5].

Before we delve further, we wish to underscore the nu-
anced nature of the term surface-reflectance, which we will
consistently employ throughout the remainder of this article.
Although we assert our intention to disentangle these features
from the spectra, we are, in fact, more accurately extracting
coherent features from within spectral groups. To illustrate
this, consider a collection of spectra obtained through multi-
scan hyperspectral imaging of a specific location at various
instances, each affected by diverse atmospheric conditions.
In this context, the repeated measurement of reflectance from
identical surface constituents ensures that surface information
remains coherent across pixels. It is worth noting here that
while the term ‘coherent features’ might seemingly overlap
with surface-reflectance features, certain atmospheric attributes
could exhibit coherency across multiscan measurements. Ad-
ditionally, surface reflectance might undergo seasonal changes,
e.g., due to variations in surface moisture content, etc. How-
ever, due to the inherent challenge of physically labeling
the coherent information and the fluidity of coherency based
on the application context, we will frequently use the term
‘surface reflectance’ when discussing concepts in this paper.
It is crucial to recognize that within the framework of the Sym-
metric Autoencoder (SymAE), the classification of information
into coherent information and nuisance information depends
on the strategies used for grouping. This paper highlights the
advantages of disentangling the coherent information through
spectral grouping for classification and surface characterization
tasks, in contrast to working with the raw spectra.

Image processing for eliminating the atmospheric effects
from hyperspectral images is tedious in a setting with lack
of prior information about the atmosphere. We provide an
alternative to traditional atmospheric corrections, avoiding the
need for complex radiative transfer modeling and instead use
a purely data-driven approach. SymAE does not rely on the
atmospheric prior, as opposed to radiative transfer approaches
[6], [7], [8] that can simulate the absorption and scattering
effects of atmospheric gases and aerosols to correct the hy-
perspectral images. Several scene-based empirical approaches
are developed for atmospheric correction [9], [10]. These
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Fig. 2. The architecture of a symmetric autoencoder disentangles surface reflectance information from the nuisance (for example, atmospheric
scattering) effects in its latent space. The surface-reflectance information is assumed to be coherent across the pixels in a group. Therefore,
it can only propagate through the network via solid arrows — notice that the dropout masks prevent its propagation. Colored arrows to
indicate the propagation of the remaining nuisance effects — notice that a symmetric function, i.e., symmetric w.r.t. the ordering of pixels,
prevents its propagation.

approaches do not rely on radiative transfer modeling of the
atmosphere. However, the applicability of these approaches
is limited due to unrealistic requirements, e.g., the flat-field
correction [11] approach requires the availability of an area
in the scene that has flat reflectance spectra; The empirical-
line approach [12] requires field-measured spectra to derive
atmospheric corrections. Our approach belongs to this class of
scene-based approaches since SymAE is trained to automati-
cally learn the nuisance characteristics while processing large
volumes of the observed data. However, more importantly, we
believe that our requirement of grouping the observed spectra
is less restrictive and therefore more practical.

Deep learning algorithms are popular for remote-sensing
image analysis tasks such as image fusion, registration, scene
classification, semantic segmentation, and pixel-based classi-
fication [13]. Like SymAE, some contemporary architectures
[14], [15] offer a fundamentally different way of correcting
the atmospheric effects in images. The authors of [15] use
synthetic spectra from radiative transfer modeling to train
an atmospheric-correction network in a supervised setting —
our data-driven approach does not involve radiative transfer
modeling. Furthermore, the permutation invariance property
used in the architecture of SymAE enables it to extract features
common to specific classes which make classification tasks
easier. Permutation invariance has been previously used in
the context of remote sensing in [16] for multiscan data to
obtain super-resolution of images. While generative models
like Generative Adversarial Networks (GANs) have found
application in remote sensing [17], [18], our approach of-
fers a distinctive interpretational advantage. It enables the
differentiation of nuisance features from class-specific surface
reflectance features within latent codes. The interpretability
of these features depends on the prior grouping step, which
holds the potential of enhancing our understanding of the
data, setting our approach apart from conventional generative

models.

II. SPECTRAL GROUPING

Our approach necessitates a priori grouping of spectra to
effectively disentangle nuisance effects. All the spectra in
a given group are presumed to contain identical coherent
information but dissimilar nuisance effects. The number of
such identifiable groups is the application and scene-specific.
If we intend to disentangle atmospheric and lighting variations
from surface reflectance, an ideal scenario for achieving this
objective is one in which multi-scan hyperspectral data is
available. In this setup, each pixel undergoes multiple scans
under diverse atmospheric conditions and varying elevation
angles. Here, each group of spectra pertains to the same
pixel but exhibits varying atmospheric influences. In this
context, SymAE proves invaluable for disentangling atmo-
spheric nuisances and pixel-specific reflectance in an entirely
unsupervised manner.

Acknowledging the challenges in acquiring multi-scan data
for real-world applications, we concentrate instead on single
hyperspectral scenes. The grouping task is straightforward if
distinct spatial features (e.g., water bodies, crops, asphalt,
etc.) are identifiable in the image. In addition, pixels that are
classified with high certainty during a preliminary analysis
can also assist the grouping task. Specifically, our approach in
this paper involves grouping pixels using a priori information
derived from two sources: 1) ground truth labeling and 2)
spatial proximity. Leveraging ground truth information entails
forming groups based on assigned pixel classes, such as
specific vegetation or land types, in hyperspectral images.
Note that the variations in textures, spectral mixing, and other
atmospheric factors exist even among pixels of the same class,
contributing to what we refer to as nuisance effects. During
training, we utilized approximately 10% of the ground truth
information. We showcase its performance on the remaining
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test pixels of the scene in Section IV. In cases where ground
truth labels are limited, we adopt an alternative approach by
working with groups of spatially proximate pixels (groups of
9 pixels, present in 3× 3 patches). Here, SymAE is trained to
extract spatially-coherent features. Although we acknowledge
that this spatial grouping method is less efficient than using
ground truth, we analyze its advantages in Section V.

A hyperspectral image is inherently three-dimensional, with
the first two dimensions representing the spatial domain, and
the third dimension corresponding to the spectral domain.
To facilitate our analysis, we group pixels into distinct sets,
bundling together all pixels belonging to the same group.
These grouped pixels are utilized for training our autoencoder
after constructing a set of datapoints denoted as {Xi}i=1,...,nX

.
Each datapoint, Xi, comprises a selection of pixels randomly
drawn, with replacement, from the same group. The datapoints
are assigned to all the available groups uniformly. In our
notation, [A;B] signifies the vertical concatenation of two
vectors, A and B. To access individual pixels within a dat-
apoint, we index them as Xi[τ ], where τ ranges from 1 to nτ .
Consequently, Xi is constructed as [Xi[1]; . . . ;Xi[nτ ]]. Each
pixel spectrum, represented by Xi[τ ], is a vector of length
equal to the number of frequency bands. These constructed
data points serve as the basis for training SymAE, with further
details provided in the subsequent section.

III. SYMMETRIC AUTOENCODER

We constructed the datapoints such that the surface re-
flectance is coherent across the pixels of each datapoint.
The goal of symmetric autoencoder [5] to disentangle this
coherent reflectance information from the remaining nuisance
variations, e.g., atmospheric effects, in its latent space. Autoen-
coders [19] are comprised of two components: an encoder Enc
that maps each datapoint Xi into latent code Hi = Enc(Xi),
and a decoder Dec that attempts reconstruct to Xi from
the code. We determine both the functions Enc and Dec by
minimizing the reconstruction loss

Enc, Dec = argmin
Enc, Dec

∑

i

∥Xi − Dec(Enc(Xi))∥2 (1)

over the training datapoints. SymAE relies on a unique encoder
architecture, as depicted in Fig. 2, to structure the latent space.
This architecture can be mathematically described by

Enc(Xi) = [REnc(Xi); NEnc(Xi[1]); . . . ;

NEnc(Xi[nτ ])]. (2)

As a result, the latent code Hi = [Ri; Ni[1]; . . . ; Ni[nτ ]]
is partitioned into the following interpretable components of
each datapoint Xi = [Xi[1]; . . . ;Xi[nτ ]]:

1) the component Ri = REnc(Xi) contains the surface-
reflectance information as it is coherent across the pixels
of Xi

2) the remaining components Ni[τ ] = NEnc(Xi[τ ]) comple-
ment Ri with pixel-specific nuisance information.

Finally, SymAE’s decoder Fuse non-linearly combines code
Ri with each pixel-specific code Ni[·] to reconstruct the

original datapoint pixel-by-pixel

X̂i = Dec(Hi) = Dec([Ri; Ni[1]; . . . ; Ni[nτ ]])

= [Fuse([Ri; Ni[1]]); . . . ; Fuse([Ri; Ni[nτ ]])].

Here, no constraints are enforced on functions NEnc and
Fuse as they are parametrized using fully-connected layers.
On the other hand, to ensure REnc, the reflectance encoder,
only encodes the coherent reflectance, we constrain it to be
invariant under permutations of the pixels in Xi. In other
words, for all permutations Π along the pixel dimension, we
desire that

Ri = REnc(Xi) = REnc(Xi[Π(1:nτ )]) (3)

purely represents the coherent information since Ri does
not depend on the labeling of the pixels in Xi. Moreover,
it is important to note that the nuisance effects, which are
dissimilar across the pixels, cannot be encoded using REnc

without significant loss of information.
SymAE’s reflectance encoder explicitly achieves the invari-

ance mentioned above using a permutation-invariant network
architectures following [20] which provide universal approx-
imation guarantees for symmetric functions. These architec-
tures use pooling functions such as the mean or the max across
the instances to ensure permutation invariance. In our experi-
ments, the spectrum of each pixel is simply transformed using
REnc1, an unconstrained function parameretized using fully-
connected layers, and mean taken along the pixel dimension

Ri =

(
1

nτ

nτ∑

τ=1

REnc1(Xi[τ ])

)
. (4)

We emphasize that the key observation in this equation is
that the mean of the transformed instances REnc1(Xi[τ ]) is
symmetric with respect to the ordering of pixels. This ensures
that the desired symmetry (eq. 3) is achieved. SymAE’s
nuisance encoder NEnc is unconstrained. This aspect is a
significant concern as the decoder Fuse might tend to ignore
the Ri component in favor of using purely Ni[·] information
for reconstruction.

As the purpose of NEnc is exclusively to encode pixel-
specific nuisance information while disregarding surface re-
flectance, SymAE incorporates dropout masks during training
via Bernoulli dropout [21] with a probability of p = 0.5:

Ni[τ ] = Dropout(NEnc(Xi[τ ])). (5)

The dropout introduces random obfuscation to elements
of Ni, making the decoder Fuse perceive the codes as dis-
similar and hindering the reconstruction of coherent surface-
reflectance information from Ni. While there is a continuous
stream of information from REnc, the outputs of NEnc inten-
tionally introduce noise, with certain features being randomly
obfuscated. This compels Fuse to extract as much meaningful
information as possible from Ri, which inherently contains
coherent data. Over time, Fuse becomes adept at capturing
all coherent information from REnc, with the remaining pixel
features learned from Ni encoded by NEnc. At test-time, the
entirety of the Ni code is sent unaltered into the decoder.
Finally, the functions NEnc, REnc1 and Fuse are trained
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concurrently by minimizing Eq. 1 with the dropout mechanism
just described. The success of SymAE requires a sufficiently
large number of pixels with dissimilar nuisance variations in
each group to achieve the desired structure of the latent space.

A. Virtual Hyperspectral Images

Using a trained SymAE network, we can generate a virtual
hyperspectral image by redatuming each of the measured pixel
spectra. The redatuming is performed pixel-by-pixel by swap-
ping the nuisance effects in a given spectrum with a reference
pixel. Redatuming data is equivalent to manipulations in the
latent space. Precisely, to redatum the kth pixel spectrum D[k],
we first extract its reflectance code using REnc1(D[k]). We
then fuse this code with the nuisance code of the reference
spectrum (indexed using k0) to obtain a virtual spectrum

D̂k0
[k] = Fuse([REnc1(D[k]); NEnc(D[k0])]), (6)

which is not originally measured. Therefore, SymAE allows
for scanning the area corresponding to pixel k with nuisance
conditions present during the observation of pixel k0. The
virtual image D̂k0

is generated by collecting all the virtual
spectra with similar nuisance effects.

IV. TRAINING WITH GROUND TRUTH

In this section, we perform spectral grouping using ground
truth information to showcase the application of SymAE. We
utilize a hyperspectral image acquired by NASA’s AVIRIS
instrument over the Kennedy Space Center (KSC), Florida, on
March 23, 1996. The image has dimensions of 512×614 pixels
and comprises 176 spectral bands. While this dataset was cor-
rected using the ATREM [22, Atmosphere Removal Program]
method based on radiative transfer modeling, researchers [23]
have highlighted the necessity for post-ATREM polishing
due to errors in solar irradiance models and atmospheric
parameter estimations. The differences in spectral signatures
among certain vegetation types may appear subtle. However,
due to the presence of nuisance effects, these spectral sig-
natures can exhibit notable discrepancies, even within pixels
belonging to the same class. Consequently, the correction of
residual nuisance effects, referred to as polishing, becomes
imperative to ensure accurate discrimination of land cover in
this environment.

To train SymAE, we partitioned the ground truth data into
separate test and training sets. As mentioned earlier, our train-
ing set comprised approximately 10% of pixels from each class
provided as ground truth within the dataset. Subsequently, we
organized the training set pixels into groups corresponding
to the ground truth categories. Our training process involved
nX = 524288 data points, utilizing nτ = 8 and a mini
batch size of 256. The dimensions of the latent codes, Ri

and Ni, were both set to 64. For further details regarding the
configuration of the architecture, a Jupyter notebook notebook
written in Julia using the Flux package [24] is shared on
https://github.com/archieb1999/SymAE KSC.

After completing training, we generated virtual spectra
using Equation 6 with randomly selected reference pixels.
The resulting vegetation spectra exhibited a notably reduced

intra-class variance, suggesting the uniformization of nuisance
effects across these spectra. This is visually demonstrated in
Fig. 3, where the spectra display a significant decrease in intra-
class variance after undergoing the redatuming process. The
autoencoder not only exhibits a high degree of proficiency
in redatuming within the training set, but the variance is also
considerably reduced in the case of test ground truth pixels that
were excluded during training. Furthermore, it is noteworthy
that subtle inter-class differences are retained throughout the
redatuming process. These findings underscore the motivation
for utilizing the redatumed pixels in subsequent classification
and characterization tasks.

To quantify the extent of nuisance effects among pixels
within a specific ground truth class, we employ the metric
of average variance. Initially, we calculate the variance in
spectral reflectance for each band, followed by computing
the average of these variance values. This average effectively
represents the overall variance among all spectra belonging
to a particular ground truth class. A higher average variance
indicates that the pixels within the chosen class exhibit signif-
icant dissimilarities. Post-redatuming, we anticipate observing
a reduction in variance. This reduction is apparent in Table
I, which presents the average variance values both before and
after redatuming with a random pixel. Notably, following the
redatuming procedure, the residual average variance in the test
pixels is consistently below 5% for the majority of the classes.

However, we wish to emphasize that the choice of a
reference pixel can significantly impact virtual spectra. In our
methodology of a priori grouping, which relies on ground truth
data, we have observed that nuisance features are not limited
to atmospheric and lighting effects; they could also include
ground-based factors. These factors encompass spectral mix-
ing, surface moisture content, and texture, among others, and
they may add complexity to the virtual spectral analysis. It
is noteworthy that these nuisance effects may affect different
classes to varying degrees. For instance, marsh classes may
be more susceptible to spectral variations due to surface water
content than upland vegetation classes, potentially resulting
in substantial fluctuations in energy reflected from marsh
pixels. Additionally, some nuisance phenomena may pertain
to specific classes but might not exist for others. For example,
features related to crop ripeness may not be relevant in the
context of water bodies. Thus, the degree of correspondence
between generated virtual images and real-world scenarios
may depend on the choice of reference pixel. Therefore, if
the intention is to employ redatuming for detailed spectral
and scenario analysis, we suggest selecting reference pixels
with relatively similar nuisance feature distributions if prior
information is available. Apart from a small example in the
upcoming subsection, a detailed study on the interpretability of
virtual spectra is beyond the scope of this paper. Instead, our
primary focus in this paper is on the advantages of uniformiz-
ing nuisance features across spectra and extracting spectral
features to enhance clustering and classification performance.
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Fig. 3. Ribbon plots illustrate reduction in intra-class variance post-redatuming. Each ribbon plot represents spectral distribution of distinct
classes, with central line denoting mean and ribbon’s width on either side indicating intra-class standard deviation. (a) Displays train set
spectra from four distinct classes, while (b) shows their respective redatumed counterparts, wherein pixels from the same classes almost
coincide, and (c) shows the reference pixel used for redatuming. (d)-(f) Show spectra from test set upland vegetation classes, following the
pattern observed in (a)-(c). While not as pronounced as in (b), the redatumed test set pixels exhibit a discernible reduction in intra-class
variance. (g)-(i) are same as (d)-(f) but for wetland classes.

TABLE I
Redatuming Significantly Reduces the Average Variance in Testing Pixels Across Diverse Ground Truth Classes in the KSC Dataset.

No. Class Training
Samples

Test
Samples

Average Variance In
Raw Spectra (×10−6)

Average Variance After
Redatuming (×10−6)

Residual Variance (%)
After Redatuming

1 Scrub 77 684 1173.9 24.6 2.10 %
2 Willow Swamp 25 216 1938.3 17.0 0.88 %
3 CP Hammock 26 230 591.9 38.0 6.42 %
4 CP/Oak Hammock 26 225 1267.6 43.5 3.43 %
5 Slash Pine 17 144 1315.4 22.2 1.69 %
6 Oak Hammock 23 206 1346.5 61.5 4.57 %
7 Hardwood Swamp 11 94 695.3 9.4 1.35 %
8 Graminoid Marsh 44 387 3466.7 51.0 1.47 %
9 Spartina Marsh 52 468 1530.9 132.3 8.64 %

10 Typha Marsh 38 339 3086.0 141.1 4.57 %
11 Salt Marsh 42 377 3986.9 415.4 10.42%
12 Mud Flats 47 415 1529.5 325.1 21.26%
13 Water Body 91 817 143.0 0.047 0.03 %
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A. Comparison to Denoising Autoencoders

Denoising Autoencoders (DAEs) represent a class of neural
networks frequently employed in unsupervised learning. They
are recognized for their proficiency in recovering underlying
data representations by intentionally introducing noise into
input data [25]. In the field of remote sensing and hyper-
spectral image (HSI) analysis, various iterations of Denoising
Autoencoders (DAEs) have been applied in previous studies
[26]. In this study, we sought to compare the noise reduction
achieved by denoising autoencoders with that of SymAE.
Our observations indicate that while denoising autoencoders
tend to smooth the spectral data, they fall short of signif-
icantly mitigating intra-class variance, as depicted in Fig.
4(b). DAEs typically assume a noise distribution, such as
Gaussian, for denoising spectra. In contrast, SymAE adopts a
different approach, learning the distribution of the underlying

nuisance/noise after spectral grouping. Remarkably, utilizing
SymAE resulted in a noticeable reduction in intra-class vari-
ance, highlighting its efficacy in capturing and discerning the
distinctive features among different classes.

As mentioned earlier, it is important to recognize that the
virtual spectra are contingent upon the reference pixel chosen
during the redatuming process. While our demonstrations
illustrate that a task such as classification remains relatively
unaffected by the choice of this reference pixel, interpreting
the virtual spectra may not be straightforward. These spectra
are still influenced by the residual nuisance features present
in the reference pixel. To illustrate this, we intentionally
selected a Salt Marsh pixel with relatively high reflected
energy (as shown in Fig. 4(d)) for redatuming Mud Flats and
Typha Marsh pixels, as depicted in Fig. 4(c). Post-redatuming,
the virtual spectra manifest noticeably elevated energy levels

(a) (b)

(c)
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Fig. 4. Comparative analysis of application of DAE and SymAE on test data. (a) Raw spectra from two land-cover classes in Kennedy
Space Center scene. (b) DAE demonstrates a propensity to smooth spectral data, yet notable within-group variations remain evident. (c)
Redatuming, as implemented by SymAE, outperforms denoising by DAE in mitigating intra-class variance. However, it is important to note
that redatumed spectra may exhibit significant dissimilarities from the original raw spectra. (d) Shows the reference Salt Marsh pixel used
for the redatuming, along with pixels from the respective ground truth classes that are closest to the redatumed spectra.
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compared to their raw counterparts. This phenomenon likely
stems from our autoencoder’s incorporation of overall reflected
energy as an element within the nuisance features. Neverthe-
less, the redatumed spectra still maintain a shape resembling
the pixels closest to them in their respective ground truth
classes, as referenced in subfigure 4(d).

In essence, the SymAE-generated virtual images are not
completely denoised; they still retain residual nuisance effects
originating from the reference pixels. Nonetheless, due to
the uniformity of nuisance features across the entire image,
the relative distinctions among redatumed pixels can prove
invaluable for subsequent image-processing tasks.

B. Virtual Images: Classification

SymAE introduces a valuable capability to visualize hy-
perspectral image locations under varying virtual conditions,
which has the potential to enhance pixel classification accuracy
and extend the possibilities of hyperspectral image analysis.
To exemplify the benefits brought about by redatuming and the
uniformization of nuisance effects across pixels, we conducted
K-Nearest Neighbor (KNN) classification, with K = 5, on
both the raw and virtual hyperspectral images. These results
are presented in Fig. 5. For the raw image, the overall accuracy
for the test pixels aligned with the ground truth stands at
81.6%, a lower figure primarily attributed to the presence of
nuisance effects. However, when applied to the virtual images
after the uniformization of nuisances, the overall accuracy
elevates significantly to 92.8 ± 0.9%. In a parallel approach,
we assessed the performance of two classical machine learning
models on our test set: 1) Random Forests and 2) linear
Support Vector Machines (SVM). The outcomes distinctly un-
derscore the significance of SymAE-generated virtual images:
an evident enhancement in predictive overall accuracy (OA)
for both Random Forests (e.g., 86.2% accuracy for raw images

versus a noteworthy 93.0± 0.9% overall accuracy for virtual
image) and linear SVM classifiers (74.0% overall accuracy
for raw images compared to a substantial 85.8± 4.9% overall
accuracy for virtual images). As a result, we conclusively
establish that the application of SymAE redatuming proves
beneficial when undertaking land-cover discrimination tasks.

While more complex models, such as the Random Forests
and KNN, exhibit relatively consistent performance, the sub-
stantial variance in accuracy when employing a linear SVM
on different virtual images highlights the decisive role of
reference pixel selection in shaping classification outcomes.
This influence is not uniform across all cases, with some refer-
ence pixels leading to remarkable enhancements while others,
albeit rarely, induce performance deterioration. On average,
our results demonstrate a significant overall improvement in
classification performance. Nonetheless, the selection of an
appropriate reference pixel can pose challenges. In subsequent
sections, we introduce an alternative method for leveraging
SymAE to further enhance clustering and classification.

C. Surface-Reflectance Code: Clustering Analysis

The alternative method we mentioned is leveraging re-
flectance code generated by REnc for clustering and classifica-
tion tasks. In addition to generating virtual images, a trained
SymAE also provides us with a reflectance code, denoted as
REnc1(D[·]), for each pixel. Since this code is intended to
remain unaffected by atmospheric distortions and other forms
of nuisance variability, the focus of this section is to leverage
this code for clustering analysis. Our objective is to investigate
whether the reflectance latent space can effectively disentangle
classes characterized by subtle differences in reflectivity, such
as neighboring vegetation types.

(a) Kennedy Space Center ground truth (b) KNN classification from raw image (c) KNN classification after redatuming

Fig. 5. K-Nearest Neighbors (KNN) pixel classification results on KSC scene maps. (a) ground truth map of the KSC scene, serving as the
baseline. (b) Pixel classification utilizing KNN on the raw image, resulting in an overall accuracy of 81.6% for the test set ground truth. (c)
Pixel classification conducted on a virtual image with uniformized nuisance, demonstrating an elevated average overall accuracy of 92.8%.
Virtual images, generated through the redatuming process, contribute to enhanced pixel classification accuracy, highlighting their valuable
role in advancing hyperspectral image analysis.
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In the case of KSC experiment, we initially sampled 100
pixels from two ground truth classes, Slash Pine and Oak
Hammock (Fig. 6(a)). We performed Principal Component
Analysis (PCA) on their spectra and observed that they closely
overlapped in the first two principal components, making
their separation challenging (Fig. 6(b)). Expanding the number
of components did not significantly alter the results. Subse-
quently, we explored an alternative approach by clustering
the pixels based on the reflectance code. The 2-D linear
subspace of the reflectance code is depicted in Fig. 6(c).
To quantitatively assess this improvement, we applied the K-
means clustering algorithm to both the raw spectra space and
the reflectance code latent space. We repeated this process
100 times with randomly sampled pixels from the classes.
The results indicated that, on average, K-means clustering in
the raw spectra space achieved an accuracy of 75.5%, while
in the latent reflectance code space, it achieved 95.9%. This
represents a substantial improvement of 20.4% in percent-
age accuracy. Even more challenging were the classes CP
Hammock and CP/Oak Hammock (Fig. 6(d), 6(e)), which
exhibited even closer proximity. In raw spectra space, the
average clustering accuracy was 53.3%. In contrast, when
we performed clustering in the REnc space, we obtained
an accuracy of 89.9%, reflecting a notable improvement of
36.6%.

In our comprehensive pairwise clustering experiment en-
compassing all ground truth classes within the scene, we

observed an average improvement of 12.0% in classification
accuracy across all class pairs. Notably, the most substantial
improvements were evident among classes characterized by
subtle differences. These pairwise enhancements are graph-
ically illustrated in Fig. 7. These findings underscore the
substantial effectiveness of REnc in capturing class-specific
features essential for distinguishing between closely related
classes.

D. Using Surface-Reflectance Code: Classification

Building on the insights gained from the previous section,
we now turn our focus to the application of SymAE for hy-
perspectral image (HSI) classification, utilizing the reflectance
encoder REnc to extract class-specific information. We trained
a feed-forward dense layer neural network to predict the
ground truth class label based on a given pixel’s reflectance
code. The classification was performed on a pixel-by-pixel
basis, resulting in an overall test accuracy of 94.65%. To the
best of our knowledge, this represents the highest classification
accuracy achieved using solely spectral information, without
leveraging spatial correlation within the scene for this train-test
split ratio. The classification results are detailed in Table II.

In our pursuit of comparing SymAE with leading HSI
classification methods that adopt a combined spatial-spectral
approach, we sought to incorporate spatial information into
our experiments. Our approach involved assigning labels to
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Fig. 6. SymAE allows for clustering pixels based on reflectance code, i.e., REnc1(D[.]) that is not affected by the atmospheric variations
and other nuisance effects. (a,d) Raw spectra of spectrally close-by classes. (b,e) These classes are hard to separate in 2D raw spectra space.
(c,f) Notice that the classes that otherwise have subtle differences in raw spectra are much easier to discriminate in latent coherent code
space. Most significant improvement in the K-means clustering experiment we described is observed in classes with subtle differences like
CP Hammock and CP/Oak Hammock depicted in (d),(e) and (f).
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Fig. 7. Heatmap illustrating improvement in clustering in KSC dataset. The matrix elements indicate the percentage accuracy difference
between K-means clustering in the latent reflectance code, REnc1(D[.]), and clustering in the raw spectral data while doing pairwise
unsupervised clustering between land-cover classes. The numbers on axes indicate the class indices, following same ordering as in I. This
heatmap pertains to the ground truth-based training scenario and the clustering was done on test set. Pairs that show minimal improvement
are those that already exhibit significant separation in raw spectra.

each pixel based on the mode of labels obtained from its
spectral feed-forward network and its eight adjacent neighbors.
This process was iterated three times, effectively applying
a form of spatial smoothing. The results of this approach
are presented in Table II, showcasing an overall accuracy of
99.48%. This performance closely aligns with state-of-the-
art methods such as SSRPnet [27] and CVSSN [28], which
harness spatial information more comprehensively.

Furthermore, we extended our assessment to include two
widely used HSI datasets: Indian Pines and Pavia University.

Employing the same number of training samples as Hong
et al. did when introducing SpectralFormer [29], the cur-
rent state-of-the-art backbone network for extracting spectral
features in HSI classification, our results on both datasets
demonstrated superior classification performance compared to
SpectralFormer when using purely spectral features, numerical
results of which are demonstrated in Table V.

TABLE II
Classification of Test Pixels from Kennedy Space Center Dataset Using SymAE Generated Reflectance Code.

No. Class Training
Samples

Test
Samples

Pixel-based
Classification Accuracy

Classification Accuracy
After Spatial Smoothing

1 Scrub 77 684 95.61 % 97.71 %
2 Willow Swamp 25 218 96.79 % 100.0 %
3 CP Hammock 26 230 85.22 % 98.26 %
4 CP/Oak Hammock 26 226 80.53 % 96.02 %
5 Slash Pine 17 144 77.08 % 94.44 %
6 Oak Hammock 23 206 77.67 % 100.0 %
7 Hardwood Swamp 11 94 88.23 % 100.0 %
8 Graminoid Marsh 44 387 96.90 % 100.0 %
9 Spartina Marsh 52 468 97.44 % 100.0 %

10 Typha Marsh 38 366 97.27 % 100.0 %
11 Salt Marsh 42 377 98.14 % 99.73 %
12 Mud Flats 47 456 98.90 % 100.0 %
13 Water Body 91 836 100.0 % 100.0 %

Overall Accuracy 94.65 % 99.48 %
Average Accuracy 91.53 % 99.09 %

Kappa ×100 94.04 99.43
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TABLE III
Classification of Test Pixels from Pavia University Dataset Using SymAE Generated Reflectance Code.

No. Class Training
Samples

Test
Samples

Pixel-based
Classification Accuracy

Classification Accuracy
After Spatial Smoothing

1 Asphalt 548 6083 93.65 % 97.63 %
2 Meadows 540 18109 93.81 % 97.91 %
3 Gravel 392 1707 83.42 % 91.86 %
4 Trees 524 2520 98.58 % 99.37 %
5 Painted metal sheets 265 1080 100.0 % 100.0 %
6 Bare soil 532 4497 97.89 % 100.0 %
7 Bitumen 375 955 91.62 % 95.39 %
8 Self blocking bricks 514 3168 88.35 % 97.03 %
9 Shadows 94 716 100.0 % 100.0 %

Overall Accuracy 93.90 % 97.90 %
Average Accuracy 94.15 % 97.69 %

Kappa ×100 91.76 97.14

TABLE IV
Classification of Test Pixels from Indian Pines Dataset Using SymAE Generated Reflectance Code.

No. Class Training
Samples

Test
Samples

Pixel-based
Classification Accuracy

Classification Accuracy
After Spatial Smoothing

1 Alfalfa 15 31 96.77 % 100.0 %
2 Corn-notill 50 1378 74.02 % 82.80 %
3 Corn-mintill 50 780 76.28 % 88.72 %
4 Corn 50 187 81.82 % 99.47 %
5 Grass-pasture 50 433 95.38 % 97.69 %
6 Grass-trees 50 680 91.18 % 97.50 %
7 Grass-pasture-mowed 15 13 100.0 % 92.31 %
8 Hay-windrowed 50 428 98.36 % 99.53 %
9 Oats 15 5 100.0 % 80.00 %

10 Soybean-no-till 50 922 82.65 % 95.77 %
11 Soybean-min-till 50 2405 69.90 % 87.69 %
12 Soybean-clean 50 543 85.82 % 98.16 %
13 Wheat 50 155 99.35 % 99.35 %
14 Woods 50 1215 88.48 % 95.97 %
15 Buildings-Grass-Trees-Drives 50 336 80.65 % 95.54 %
16 Stone-Steel-Towers 50 43 100.0 % 100.0 %

Overall Accuracy 80.82 % 91.97 %
Average Accuracy 88.79 % 94.41 %

Kappa×100 78.19 90.82

TABLE V
Comparison Between Classification Accuracies of SymAE and SpectralFormer Using Only Spectral Information.

HSI Scene Metric SpectralFormer SymAE

Pavia University
Overall Accuracy
Average Accuracy

Kappa ×100

87.94 %
87.47 %

83.58

93.90 %
94.15 %

91.76

Indian Pines
Overall Accuracy
Average Accuracy

Kappa ×100

78.55 %
84.68 %

75.54

80.82 %
88.79 %

78.19
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(a) (b)

Fig. 8. Classification of SymAE-generated reflectance code for the Kennedy Space Center scene. a) Pixels are labeled using purely spectral
information. b) Spatial smoothing applied to (a) which improved the classification accuracy.

This notable improvement in performance emphasizes
SymAE’s strong proficiency in spectral feature extraction. As
Sun et al. pointed out in their study [30], spectral features play
a fundamental role in accurately characterizing the distribution
of ground objects, serving as crucial discriminative factors
in HSIs. Despite these promising results, it is important to
note that purely spectral methods are susceptible to scattered
noise, which can lead to lower accuracy levels. Even after
applying spatial smoothing, our accuracies on these datasets
did not match the leading spectral-spatial methods. These
findings collectively underscore SymAE’s potential for hyper-
spectral image classification and motivate further exploration
into advanced techniques for incorporating spatial information.
Such exploration holds the promise of yielding even greater
classification performance.

V. TRAINING SYMAE WITHOUT GROUND TRUTH

Many remote sensing datasets lack ground truth labels for
different spectra, making it challenging to group spectra before
SymAE training. In such scenarios, we rely on the assumption
of spatial correlation in the reflectance information, enabling
us to group pixels located nearby within the scene. This
assumption implies that spatially neighboring pixels likely
belong to the same class.

This approach, which assumes that spatial proximity im-
plies class similarity, provides structural organization to the
data even when explicit labels are absent, costly to obtain,
or difficult to acquire. This conjecture is particularly valid
when dealing with datasets characterized by significant spatial
correlation, as seen in examples like the Indian Pines dataset,
which contains nearly 10 classes (farmlands) with extensive
spatial coverage. Guided by this premise, we partitioned

the KSC scene into small 3 × 3 pixel groups for SymAE
training. Our experiments on the KSC dataset revealed an
average enhancement of 8.7% in pairwise K-means clustering
accuracy, akin to the results discussed in subsection IV-C,
when utilizing the reflectance code instead of raw spectra. It is
crucial to note that we did not observe this improvement when
spectra were randomly grouped within the scene. As expected,
random spectral grouping led to significantly poorer clustering
performance.

The clustering analysis, as illustrated in Fig. 9, provides
valuable insights into the performance of SymAE concerning
pair-wise classes. We expect that the pixels situated close to
class boundaries might not be well represented in SymAE’s
latent space due to the simplicity of the grouping approach
employed. As evident, the performance of SymAE does exhibit
variations across different classes. In fact, there is evidence of
performance degradation for certain classes when compared
to the use of raw spectra — most of these classes are not
spatially contiguous or have a small extent.

This observation motivated us to verify this unsupervised
approach further, in a more concentrated setting. We chose
a small patch of land on the Indian Pines data set where
our spatial-proximity assumption would seem to fit well. The
patch primarily contains two close-by classes: Soybean-clean
and Corn-min-till. The patch and the clustering analysis of
the pixels are depicted in Fig. 10. In line with our prior
observations from subsection IV-C, the initial representation
of raw spectral data using the first two principal components
does not reveal clear class separations. However, a substantial
enhancement in structure becomes evident when examining the
latent reflectance code space, where class distinctions become
considerably more discernible. It is worth highlighting that
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Fig. 9. Heatmap illustrating the improvement in K-means clustering achieved by utilizing the latent reflectance code in place of raw spectra,
similar to Fig. 7, but without relying on ground truth labels. The heatmap highlights substantial performance enhancements across most
classes, while also indicating instances of performance decline among specific class pairs.

(a)

(b)

(c)

Fig. 10. A focused testing of SymAE without ground truth in Indian Pines scene. (a) A selected sub-region within the scene characterized
by favorable spatial conditions to test SymAE without ground truth. (b) A 2D representation of the raw spectral space, utilizing the same
color scheme as in (a) to visualize data points. (c) The 2D latent space of the reflectance code. Pixels near class boundaries pose challenges
for differentiation, aligning with our spatial proximity assumption that groups border-adjacent pixels together. However, pixels farther from
class boundaries exhibit clear separation within this space, aiding straightforward discrimination.
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pixels positioned near or along the class boundaries present a
challenge in terms of differentiation. This observation aligns
with our underlying assumption of spatial proximity, which
groups border-adjacent pixels together prior to the SymAE
training process, even if they genuinely belong to distinct
classes. On a positive note, pixels situated at a greater dis-
tance from the class boundaries, or beyond their immediate
vicinity, exhibit a distinct separation within the latent space.
This facilitates their effective classification using a straight-
forward decision boundary. The results illustrate improved
clustering within the latent space. This unsupervised grouping
approach holds potential utility in settings where ground truth
information is unavailable, such as remote or extraterrestrial
environments. In future research endeavors, we will focus
on developing advanced and robust methodologies for prior
grouping, especially in unsupervised contexts.

VI. DISCUSSION

In this section, we delve into the distinctive training phe-
nomena observed during SymAE training, consider potential
implications and applications of this architecture, and outline
areas with room for future improvements.

A. Atypical training nature of SymAE and choice of activation
function

We observed an intriguing phenomenon during the training
process of SymAE. Initially, the training loss curve exhibits
a declining trend, followed by a subsequent increase in loss,
and then eventually reaching a state of saturation. Notably, this
increase in loss corresponds with an improvement in K-means
clustering performance within the latent space. We conjecture
that this phenomenon is attributable to the feature transfer
dynamics between the encoding modules, specifically from
NEnc to REnc, and the attention of decoder Fuse to them.
In the early stages of SymAE training, NEnc inadvertently
captures coherent reflectance features. As training progresses,
dropout layers intermittently obfuscate these features. Conse-
quently, Fuse works to extract information from REnc, which
continually supplies data. Over time, Fuse adjusts to make
the most of REnc-sourced data. However, it is important to
note that due to REnc’s inherent constraints, the quality of
reconstruction falls short of what an unconstrained dense layer
network can achieve. This discrepancy leads to the observed
increase in loss during training.

Having a sufficiently long nuisance code length can mitigate
this atypical behavior, but that would significantly increase
the number of training updates required to achieve effective
disentanglement of nuisance and reflectance features in latent
space. Empirically, we consistently achieved satisfactory per-
formance of SymAE upon 3000 to 4000 training epochs with
2048 minibatches, each minibatch containing 256 datapoints
in our experiments.

We would also like to highlight our selection of the Leaky
ReLU with slope parameter 0.5 as activation function. Our
decision in this regard was guided by empirical observations
from our study. Throughout our investigations, we observed
that traditional activation functions, including tanh and ReLU,

Fig. 11. Atypical training curves we encountered while training
SymAE. At the outset, the training loss curve shows a descending
trend, which is subsequently followed by a rise in loss, ultimately
reaching a state of saturation.

exhibited susceptibility to vanishing gradient issues and the
dying ReLU problem [31]. These challenges are particularly
pronounced in SymAE, given its inherent stochastic nature.
Our experimental results unequivocally demonstrated that the
Leaky ReLU, characterized by its inherent flexibility, effec-
tively mitigates these issues, thus establishing itself as the
better choice for our network.

B. Applications and future possibilities with SymAE

Symmetric Autoencoder (SymAE) introduces a data-driven
architecture with significant potential applications in challeng-
ing scenarios where physical modeling is impractical. For
instance, it can find utility in remote sensing tasks conducted
in extraterrestrial environments or locations with limited in-
formation available about nuisance factors. SymAE offers an
alternative approach that sidesteps the complexity associated
with developing intricate physical models.

Some key implications and potential future applications of
SymAE encompass:

• Atmospheric Correction Alternative and Data Quality
Enhancement: SymAE’s capacity to disentangle surface
reflectance information from nuisances like atmospheric
interference and sensor noise provides an appealing alter-
native to conventional atmospheric correction methods.
This has the potential to significantly enhance data qual-
ity, particularly in settings where physical modeling is
unfeasible.

• Scenario Exploration and Virtual Imaging: SymAE’s abil-
ity to generate virtual images under diverse conditions
facilitates scenario exploration and hypothesis testing,
supporting more informed decision-making.

• Data Augmentation and Model Training: SymAE’s capa-
bility to generate synthetic data could bolster machine
learning model training, enhancing model robustness.
This could prove particularly valuable in data-scarce
scenarios.
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• Enhanced Hyperspectral Signature Analysis: SymAE’s
capacity to reduce intra-class variance enhances hyper-
spectral signature analysis, potentially aiding in finer ma-
terial differentiation and environmental change detection.

• Spatial-Spectral Fusion: Future investigations can delve
into the integration of spatial information with spectral
data, further extending SymAE’s utility in applications
such classification and clustering.

C. Scope for improvement

While SymAE has shown promising results, there are cer-
tain aspects that warrant further improvement. One significant
consideration is the time required to achieve effective disen-
tanglement between reflectance and nuisance features. During
our experiments, we observed that the inherent stochastic
nature of SymAE training demanded a substantial investment
of approximately 12 hours to reach a point where reflectance
and nuisance features were satisfactorily disentangled, based
on the configurations chosen for the datasets in this study.
This extended training duration prompts the exploration of
more efficient training strategies and architectural refinements,
offering a compelling avenue for future research. Another area
of improvement relates to the initial grouping method em-
ployed in the fully unsupervised scenario presented here. This
method, while effective to some extent, is relatively simplistic
and susceptible to misclassifying pixels from distinct classes as
a single group. In future investigations, we aim to enhance this
grouping algorithm to minimize the probability of erroneously
assigning pixels from different classes to the same group.
This refinement will contribute to the overall robustness of
the SymAE approach, particularly in scenarios where ground
truth labels are unavailable or challenging to obtain.

VII. CONCLUSION

In conclusion, this study has introduced the Symmetric
Autoencoder (SymAE) architecture in the context of Hyper-
spectral Imaging (HSI) analysis and demonstrated its capa-
bilities. SymAE’s unique approach to disentangling nuisance
features from surface reflectance features in a purely data-
driven manner presents potential opportunities for advancing
HSI data preprocessing and analysis. We have showcased the
practicality of SymAE by utilizing it to generate virtual images
through redatuming spectra, effectively uniformizing nuisance
effects across hyperspectral image spectra and reducing intra-
class variance. Compared to denoising autoencoders, SymAE
offers superior performance in this regard. Furthermore, the
use of virtual images enhances various image analysis tasks,
which were particularly demonstrated in classification and
clustering. Our work has also highlighted the extraction of
reflectance codes, which remain independent of nuisance ef-
fects. We demonstrated the capability of SymAE to extract
spectral features, enhancing clustering and classification per-
formance, outperforming state-of-the-art architectures in the
process. To enhance accuracy further, we introduced a spatial
smoothing technique, complementing SymAE’s spectral ca-
pabilities. While this narrows the performance gap between

our purely spectral approach with state-of-the-art spectral-
spatial classification methods, realizing the full potential of
spatial information in classification requires more advanced
methodologies. Additionally, we proposed a method for ap-
plying SymAE without relying on ground truth information,
opening possibilities for extraterrestrial settings or environ-
ments where modeling nuisance phenomena is challenging.
However, the current grouping method before SymAE training
without ground truth requires refinement, offering an avenue
for future research. Our architecture has the potential to find
applications in various domains, including spectral signature
analysis, data augmentation, and scenario analysis, making
Symmetric Autoencoders a tool with promise in HSI analysis,
inviting further exploration and evaluation within the research
community.
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[1] José M Bioucas-Dias, Antonio Plaza, Gustavo Camps-Valls, Paul Sche-
unders, Nasser Nasrabadi, and Jocelyn Chanussot, “Hyperspectral
remote sensing data analysis and future challenges,” IEEE Geoscience
and remote sensing magazine, vol. 1, no. 2, pp. 6–36, 2013.

[2] Gary A Shaw and Hsiaohua K Burke, “Spectral imaging for remote
sensing,” Lincoln laboratory journal, vol. 14, no. 1, pp. 3–28, 2003.

[3] Mark A. Kramer, “Nonlinear principal component analysis using
autoassociative neural networks,” AIChE Journal, vol. 37, no. 2, pp.
233–243, 1991.

[4] I Goodfellow, Y Bengio, and A Courville, Deep learning, MIT Press,
2016.

[5] Pawan Bharadwaj, Matthew Li, and Laurent Demanet, “Redatuming
physical systems using symmetric autoencoders,” 2022.

[6] Bo-Cai Gao, Kathleen B. Heidebrecht, and Alexander F.H. Goetz,
“Derivation of scaled surface reflectances from aviris data,” Remote
Sensing of Environment, vol. 44, no. 2, pp. 165–178, 1993, Airbone
Imaging Spectrometry.

[7] Bo-Cai Gao and Curtiss O. Davis, “Development of a line-by-line-based
atmosphere removal algorithm for airborne and spaceborne imaging
spectrometers,” in Imaging Spectrometry III, Michael R. Descour and
Sylvia S. Shen, Eds. International Society for Optics and Photonics,
1997, vol. 3118, pp. 132 – 141, SPIE.

[8] Minzheng Duan, Qilong Min, and Daren Lü, “A polarized radiative
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