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SUMMARY

Least-squares inversion of seismic reflection waveforms can

reconstruct remarkably detailed models of the Earth’s subsur-

face. However, the cycle-skipping associated with the high-

frequency waveforms are responsible for spurious local min-

ima in its objective function. Therefore, it is often difficult for

descent methods to converge to the true model without start-

ing from an accurate large-scale velocity estimate. To partially

overcome this difficulty, we propose to use multiple objec-

tive functions for inversion. An additional constraint based

on cross-correlation is added to the conventional least-squares

(LS) inversion. Observations suggest this will result in a model

with an accurate background velocity and reflectivity that cor-

responds to the global minimum of the least-squares objective

function. Optimization of a cross-correlation based function

(CC) in the data domain appears to pull the trapped solution

out of the local minima associated with the least-squares ob-

jective function, and vice versa. Some 2-D numerical tests

confirm the validity of the approach in the absence of low tem-

poral data frequencies, starting from a constant initial velocity

model.

INTRODUCTION

Conventionally, full waveform inversion (FWI) minimizes the

least-squares data misfit to estimate the Earth’s model param-

eters that explain the observed data (Tarantola, 1984; Virieux

and Operto, 2009). Due to the computational cost of wave-

equation modeling, this non-linear optimization can only be

performed using gradient-based techniques, which are known

to get stuck in the nearest local minimum of the objective func-

tion if the initial model is too far from the true one. The effect

of this local minima problem becomes severe when:

1. Reliable low frequencies are absent in the observed data.

Low frequencies which aren’t cycle skipped can be effi-

ciently inverted to provide long-scale updates (necessary

to update the background velocity) to the model. Global

convergence requires both the background velocity and re-

flectivity to be updated. Bunks et al. (1995) suggested

the inversion of low frequencies prior to full bandwidth

inversion since they help in the reconstruction of a kine-

matically correct background velocity model. Inversion of

higher frequencies after such a reconstruction improves the

resolution of the model.

2. No prior information about the Earth model is available.

In that case, conventional velocity analysis methods can

be used to construct a reasonable initial velocity model,

but such methods are not completely automatic and involve

manual picking of velocities.

Alternative functionals can be formulated that give more weight

to the traveltime content in the seismic waveforms. They are

known to have a smooth topography and their associated opti-

mization is called wave-equation traveltime tomography (Luo

and Schuster, 1991). The traveltime shift between the observed

and the calculated waveforms can be quantified using cross-

correlation (van Leeuwen and Mulder, 2010) rather than man-

ual picking. These inversion methods are proven to be efficient

compared to existing ray-based traveltime tomography, which

involve a high-frequency approximation, when inverting trans-

mitted waves in seismic data. However, the application to re-

flection data suffers from the fact that the reflectivity and back-

ground velocity of the model have to be estimated simultane-

ously. Zhang et al. (2011) proposed converting the reflection

experiment into two virtual transmission experiments, but this

requires manual picking of reflectors. Migration-based travel-

time tomography (Clément et al., 2001) attempts to ameliorate

the cycle-skipping problem by comparing the data after migra-

tion/demigration and to original observed data. This leaves the

zero-offset data in place, even in the wrong velocity model, and

then should correct for move-out differences at larger offsets.

Van Leeuwen (2010) considered a correlation-based general-

ization of the method by maximizing the correlation at zero

lag. These methods depend, however, on constructive inter-

ference after stacking, otherwise, no reflections will appear in

the migrated/demigrated data. The required amplitude scaling

is not trivial and may require iterative migration. The com-

putation of the gradient of the objective function with respect

to the model parameters is more complicated than for clas-

sic FWI. In order to overcome these difficulties, we propose a

multi-objective inversion scheme that can potentially output a

velocity model with accurate rough and smooth components.

The multi-objective inversion is performed using two differ-

ent functions: 1) the classic least-squares objective function

(LS) and 2) a cross-correlation based misfit functional (CC)

in the data domain. The CC objective function acts as a nec-

essary constraint to the least-squares inversion and improves

convergence. If the solution is trapped in a local minimum of

one of these objective functions, it can be pulled out by the

other, allowing the inversion to converge to an acceptable out-

put model.

This paper is organized into three sections. The first section

describes the method provides and the functions used for op-

timization. In the second section, we test the validity of the

method by some 2-D numerical experiments. The last section

summarizes the paper.

METHOD

Let pobs(xs,xg; t) denote the recorded data in the time do-

main at the receiver location, xg, due to a source at xs. Simi-

larly, pcal(xs,xg; t) are data modeled with the constant-density
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Multi-objective FWI in the absence of low frequencies

Figure 1: Plots of the LS and CC objective functions for a sin-

gle reflected trace as a function of the time shift between ob-

served and calculated traces. The source wavelet is a 10–40Hz

trapeziodal wavelet (inset). It turns out that the local extrema

of the LS objective function correspond to local minima of the

CC objective function.

acoustic wave equation. The LS functional can be written as

(Tarantola, 1984):

Jls =
1

2

∫

xs

∫

xg

χls(xs,xg) dxgdxs,

χls(xs,xg) =

∫

t

(
pcal(t)− pobs(t)

)2
dt,

the velocity model corresponding to its global minimum com-

pletely explains the observed data. Following van Leeuwen

and Mulder (2010), the CC objective function is

Jcc =−
1

2

∫

xs

∫

xg

χcc(xs,xg) dxgdxs,

χcc(xs,xg) =

∫

τ

(∫

t

pcal(t)pobs( t +τ) dt

)2

(1−e−ατ2

)
︸ ︷︷ ︸

window at τ=0

dτ.

Here, τ denotes the cross-correlation lag. The parameter α

controls the width of the Gaussian window around zero lag. In

the work of van Leeuwen and Mulder (2010), it was chosen

fairly small to improve the convexity of the objective function.

Here, we choose α deliberately large, so that χcc(xs,xg) ∼
(〈pcal

, pobs〉)2, where 〈·, ·〉 denotes the inner product. If the

normalized observed data perfectly match the normalized cal-

culated data, then χcc should reach its maximum.

Local minima of Jcc correspond to the local extrema of Jls.

As a very simple example, consider two mono-frequency si-

nusoids representing observed and calculated waveforms. The

least-squares functional will have an extremum when the phase

Figure 2: The least-squares error (blue dots) for traces at differ-

ent offsets marked on the graph of Figure 1a. It is not possible

that all blue dots lie simultaneously in a local minimum for a

given interval velocity error.

difference between the two is nπ , with n integer. It is obvious

that their inner product (since α is large) and hence the abso-

lute value of Jcc will be maximal at those phase shifts where Jls

has extrema. Figure 1 plots, in red and blue, both these func-

tionals obtained by shifting a trapezoidal wavelet (10–40Hz)

instead of a sinusoid. Green vertical arrows in the figure mark

the position of a local maximum of Jls that corresponds to a lo-

cal minimum of the Jcc plot. Minimizing either of these func-

tionals individually may not be effective since both of them

suffer from the cycle-skipping problem, as is obvious from the

local minima in Figure 1a and Figure 1b. Mora (1989) noted

that Jls optimization can effectively provide low-wavenumber

updates to the velocity model, but in practice, these long wave-

lengths are masked by the large amplitudes of the reflectors.

Optimization of Jcc will help the solution to climb the local

maxima associated with Jls, indicated as step 1 in Figure 1.

This will help the least-squares inversion to reach the correct

global minima, as indicated by step 2 in Figure 1. Since the

data have multiple offsets, it is unlikely that we reach a local

minimum of both these objective functions simultaneously, as

illustrated in Figure 2. When Jls is optimized starting from

a homogeneous initial velocity model, the interval velocity is

not updated and the long-offset traces are cycle skipped, as in

Figure 2.

Optimization method. Now that we have two functionals

with complementary behavior, we adopt the following strategy

to perform the optimizations. The LS and CC functions are al-

ternatively minimized. The minimization of the Jls should be

carried out first, because it produces the reflectors in the model,

which are needed for the Jcc functional. The velocity model

output of the Jls inversion always acts as an input to the Jcc

inversion and vice-versa. The number of iterations performed
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Multi-objective FWI in the absence of low frequencies

Figure 3: Layered model inversion results for a 15-Hz Ricker source wavelet. a) Actual velocity model used to generate the

synthetic data. b) Full-bandwidth multi-objective inversion result. c) Conventional least-squares waveform inversion output where

the optimization gets stuck in a local minimum.

Figure 4: Fault model inversion results using a 15-Hz Ricker source. a) Actual velocity model used to generate the synthetic data.

b) Full bandwidth multi-objective inversion result. c) Conventional least-squares waveform inversion result.

Figure 5: Fault model inversion results for a Ricker wavelet after a 6-Hz low-cut filter. a) Time domain multi-scale frequency

FWI reconstruction result, using 4 bands between 6 and 24Hz. b) Multi-objective inversion result for low-cut Ricker source. c)

Multi-objective inversion result for a 10–24Hz trapezoidal source wavelet.
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Multi-objective FWI in the absence of low frequencies

during minimization of the functions is variable. The iterations

stop when convergence stagnates, indicating that a local mini-

mum has been reached. The method then switches to the other

functional, using the latest inversion result as a starting model.

2-D NUMERICAL EXAMPLES

We tested the multi-objective method using two small syn-

thetic examples involving different acoustic velocity models

both of 1000-m width and 800-m depth. We placed 100 evenly

spaced receivers at a depth of 40m. Synthetic data were gener-

ated for 10 sources, 100m apart, for the layered model shown

in Figure 3a and for 50 sources, 20m apart, for the fault model

in Figure 4a. In both cases, we assumed the velocity of the top

layer, 2000m/s, to be known so that the direct arrivals can be

muted from the ‘observed’ data.

We use a time-domain staggered-grid finite-difference code for

the constant-density acoustic equation to model the data and to

perform the adjoint wavefield computations required for calcu-

lating the gradients (Plessix, 2006; Fichtner, 2010). The opti-

mization was performed by the L-BFGS quasi-Newton method

(Byrd et al., 1995). In all experiments, we started from the

same initial homogeneous model with a velocity of 2200m/s

below the top layer. And verified that cycle-skipping is avoided

if Jls is used with frequencies between 1 and 6Hz in a multi-

scale approach (Bunks et al., 1995).

Inversion of full-bandwidth using a 15-Hz Ricker wavelet.

A one-time Jls inversion of the full-bandwidth data suffers from

the cycle-skipping problem. Figures 3c and 4c show the out-

put of conventional full waveform inversion corresponding to

the layered and the fault model, respectively. The full band-

width multi-objective inversion produces much better results,

shown in Figures 3b and 4b and provides a reconstruction of

the long-scale features in the model.

Inversion without frequencies below 6Hz for the fault model.

Next, we used a Ricker source time function as a source wavelet

after applying a 6-Hz low-cut filter to serve as the ’observed’

data of the fault model. We tested the performance of the

multi-scale FWI by first inverting the data between 6 and 10Hz,

followed by the three subsequent 4-Hz bands up to 24Hz. The

result is plotted in Figure 5a, which is not better than the con-

ventional least-squares FWI output in Figure 4c. The multi-

objective inversion produces a similar result as before, shown

in the Figure 5b. Finally, we tried to break the method by se-

lecting a ringy trapeziodal wavelet (10–24Hz) as source time

function. The result in Figure 5c shows the failure of our ap-

proach in that case.

Convergence behavior of multi-objective inversion. Fig-

ure 6 displays the convergence behavior of the Jls and Jcc ob-

jective functions applied to the Ricker-source fault model in-

version of Figure 4b. We see that whenever Jcc is minimized,

the solution reaches a local maximim of Jls. The minimization

of Jls in the next phase prevents the optimizer to get struck

in the local minimum. If many such multi-objective inversion

steps are performed, then both these objective functions even-

tually reach their respective global minimum in this case.

Figure 6: a) Least-squares misfit, plotted as a function of

the multi-objective iteration count. The color scale displays

the value of the least-squares misfit function. At each multi-

objective iteration, several least-squares iterations are per-

formed until convergence halts. The number of these itera-

tions is indicated on the vertical axis and the change in color

from red to blue shows its decrease, both in each column and

overall, after restarting from the CC result. b) Value of the CC

functional at the final iteration of each multi-objective inver-

sion step.

CONCLUSIONS

We presented a multi-objective inversion scheme where the

conventional least-squares misfit functional is coupled with

a correlation-based cost functional. Synthetic results demon-

strate that this can be effective even in the absence of low tem-

poral frequencies in the observed data. The correlation-based

cost functional appears to be capable of pulling the inversion

result of least-squares objective function out of a local mini-

mum, and the other way around. By performing a number of

iterations with each functional in an alternating way, we were

able to construct an acceptable inversion result that could not

be reached with each of the methods independently. Future

work is necessary to better understand the behavior of these

two functionals and their potential to reconstruct more com-

plex models.
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