
Geophysical Journal International
Geophys. J. Int. (2016) 206, 1076–1092 doi: 10.1093/gji/ggw129
Advance Access publication 2016 April 6
GJI Seismology

Full waveform inversion with an auxiliary bump functional

Pawan Bharadwaj,1 Wim Mulder1,2 and Guy Drijkoningen1

1Department of Geoscience & Engineering, Delft University of Technology, Delft, The Netherlands. E-mail: bharadwaj.pawan@gmail.com
2Shell Global Solutions International B.V., Rijswijk, The Netherlands

Accepted 2016 April 1. Received 2016 April 1; in original form 2015 November 5

S U M M A R Y
Least-squares inversion of seismic arrivals can provide remarkably detailed models of the
Earth’s subsurface. However, cycle skipping associated with these oscillatory arrivals is the
main cause for local minima in the least-squares objective function. Therefore, it is often
difficult for descent methods to converge to the solution without an accurate initial large-scale
velocity estimate. The low frequencies in the arrivals, needed to update the large-scale com-
ponents in the velocity model, are usually unreliable or absent. To overcome this difficulty, we
propose a multi-objective inversion scheme that uses the conventional least-squares functional
along with an auxiliary data-domain objective. As the auxiliary objective effectively replaces
the seismic arrivals by bumps, we call it the bump functional. The bump functional mini-
mization can be made far less sensitive to cycle skipping and can deal with multiple arrivals
in the data. However, it can only be used as an auxiliary objective since it usually does not
provide a unique model after minimization even when the regularized-least-squares functional
has a unique global minimum and hence a unique solution. The role of the bump functional
during the multi-objective inversion is to guide the optimization towards the global minimum
by pulling the trapped solution out of the local minima associated with the least-squares func-
tional whenever necessary. The computational complexity of the bump functional is equivalent
to that of the least-squares functional. In this paper, we describe various characteristics of the
bump functional using simple and illustrative numerical examples. We also demonstrate the
effectiveness of the proposed multi-objective inversion scheme by considering more realistic
examples. These include synthetic and field data from a cross-well experiment, surface-seismic
synthetic data with reflections and synthetic data with refracted arrivals at long offsets.

Key words: Numerical solutions; Inverse theory; Tomography; Non-linear differential equa-
tions; Seismic tomography.

1 I N T RO D U C T I O N

Full waveform inversion (FWI) is a nonlinear optimization proce-
dure that estimates the Earth’s model parameters by least-squares
fitting of the recorded arrivals in the seismic data (Tarantola 1984;
Mora 1988, 1989; Pratt 1999; Virieux & Operto 2009; Fichtner
2010). Due to the computational cost of the wave-equation mod-
elling, the optimization is usually performed with gradient-based
techniques, although several authors have tried more costly global
optimization techniques (Sen & Stoffa 1991; Stoffa & Sen 1991;
Sambridge & Drijkoningen 1992; Gao et al. 2014; Datta 2015).
While fitting the observed and the modelled seismic arrivals with the
conventional least-squares objective function, the gradient-based
optimization will get trapped in the nearest local minimum when
the error in the arrival time exceeds about half a period of the signal
(Gauthier et al. 1986; Snieder et al. 1989; Mulder & Plessix 2008;
Symes 2008). Here, period is related to the dominant frequency of
the data. In other words, the least-squares inversion cannot recon-

struct velocity anomalies that cause shifts in the arrival times larger
than half a period. Usually, the velocity anomalies accounting for the
arrival times have relatively low wavenumbers. Hence, inversion of
the low-frequency seismic signals with larger periods is easier and
they help in the reconstruction of a kinematically correct velocity
model.

1.1 Data-domain objective functions

Many authors have formulated alternative data-domain functionals
to achieve global convergence in the absence of the necessary low
frequencies (Luo & Schuster 1991; Shin & Min 2006; Shin & Cha
2008, 2009; Zhang & Wang 2009; van Leeuwen & Mulder 2010;
van Leeuwen 2010; Bozdağ et al. 2011; Chauris et al. 2012; Donno
et al. 2013; Warner & Guasch 2014; Engquist & Froese 2013).
These can be grouped into the following two major classes.
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Class 1. Functionals that give more weight to the kinematic than
to the amplitude error between the seismic arrivals. They often
involve the cross-correlation between the observed and modelled
arrivals (Luo & Schuster 1991; van Leeuwen & Mulder 2010; van
Leeuwen 2010). After cross-correlation, the arrival-time error can
be picked by hand, which is tedious and to be avoided if possi-
ble. Fully automatic methods involve proper normalization of the
arrivals prior to cross-correlation in order to ensure that the en-
ergy at non-zero time lags quantifies the arrival-time error. These
functionals, however, suffer from cross-talk between multiple ar-
rivals. Hence, the data are assumed to have only single arrivals or
strong first arrivals. Such functionals are primarily used in cross-
well data and tomographic inversion. Luo & Sava (2011) suggested
replacing the cross-correlation with a deconvolution to obtain better
convergence.
Class 2. Functionals that aim to fit the data after transforming them
into a simpler form. By this transformation, the strong nonlinear
dependence of the functional with respect to the medium parameters
can be avoided (Schuster 2015). The functionals using simplified
data have a basin of attraction with a larger size than that of the
least-squares functional. The simplified data are easier to fit as
they have artificial ultralow frequencies that can circumvent the
cycle-skipping problem during the optimization. Creation of these
artificial low frequencies by a nonlinear operation bears a similarity
to other methods such as using deconvolution prior to data fitting
(Fei et al. 2012), traveltime picking, and a differential-semblance
variant that recovers missing low frequencies (Sun & Symes 2012).
It should be noted that these simplifying operators act in a nonlinear
way on the data, unlike the usual scale separation in the multiscale
inversion approach (Bunks et al. 1995), which is linear. This means
that they do not solely rely on the low-frequency content of the data.
An example is the functional that measures the misfit between the
envelopes of the observed and the modelled waveforms (Bozdağ
et al. 2011; Wu et al. 2014; Chi et al. 2014; Luo & Wu 2015). The
envelope operator is nonlinear and the resulting data have ultralow
frequencies. Another example is the normalized integration method
(Chauris et al. 2012; Donno et al. 2013) that uses the normalized
time integral of the squared data for least-squares minimization.
The normalized integration method, however, might suffer from
noise. An advantage of using these functionals, compared to the
correlation-type functionals, is that they take multiple arrivals in
the data into account.

1.2 Problems using the envelope-based misfit

In this paper, we formulate another data-domain objective function
that uses the data in a reduced or simplified form. We call it the
bump functional, after the mathematical definition of a bump func-
tion. A bump function or mollifier is a smooth function in the sense
of having continuous derivatives of all orders. Intuitively, given a
function which is rather irregular or rough, convolution with a molli-
fier will mollify the function, that is, its sharp features are smoothed.
It belongs to the second class of functionals mentioned above. The
bump functional bears a strong similarity to the envelope-based
misfit functional, without suffering from the following issues.

Issue 1. The envelope-based misfit may perform worse than a
correlation-based functional, even in the case of a single arrival,
because global convergence with a gradient-based method can only
be obtained if the modelled and the observed envelopes partially
overlap. In other words, this functional cannot reconstruct velocity
anomalies that separate the modelled and the observed arrivals in

time by roughly more than the dominant period. This is due to the
fact that the envelope-based misfit is not sensitive to arrival-time
errors that exceed the overall width of the observed and modelled
envelopes.
Issue 2. One of the key challenges in waveform inversion is the
reconstruction of the smooth background velocity from reflected
arrivals recorded later in time and at shorter offsets, compared to
transmitted early arrivals. The envelope-based misfit cannot recon-
struct the background velocity of the model using only reflection
data. Wu et al. (2014) and Luo & Wu (2015) note that the envelope-
based inversion results are much rougher when fitting the reflected
arrivals in the data. During inversion, in order to fit only the stronger
transmitted arrivals in the records, they use squared envelopes in-
stead of just the envelopes. In this paper, we will analyse the cause
of this issue in more detail.

1.3 Why the bump functional?

The bump functional can be seen as a generalized envelope-based
misfit. We show that it not only can be made insensitive to cycle
skipping but also has an improved global-convergence robustness
compared to the envelope-based misfit. The bump functional is sen-
sitive to arrival-time errors in the modelled data that are larger than
a period. Furthermore, as the evaluation of the functional does not
involve cross-correlation, it is also applicable to data containing
multiple arrivals. The price paid is severe non-uniqueness while
estimating the solution. In other words, the solution of the bump
functional will depend on the initial guess and the chosen optimiza-
tion method.

1.4 Importance of multi-objective strategy

In this paper, we discuss different properties of the bump functional.
We note that the bump-functional inversion suffers from the same
second issue as the envelope-based misfit. In order to partially over-
come this difficulty, we propose a multi-objective inversion strategy
using both the bump functional and the least-squares functional. We
illustrate the effectiveness of this inversion strategy by a number of
examples.

The rest of the paper is organized such that first we describe the
conventional least-squares optimization. After that, we formulate
the bump functional and demonstrate its characteristics using some
numerical experiments. Finally, we describe the proposed multi-
objective inversion strategy and show its effectiveness using realistic
numerical examples. The last section summarizes the paper.

List of symbols

x Horizontal coordinate
z Vertical coordinate
xr Receiver horizontal coordinate
x Subsurface point, (x, z)
xs Source position, (xs, zs)
xr Receiver position, (xr, zr)
t Time
f Frequency
kr Wavenumber
fd Dominant frequency in observed data
τ d Dominant period in observed data
τmax Largest period in observed data
λd Dominant wavelength at receivers
p Modelled time-domain wavefield
q Observed time-domain wavefield
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pb Modelled time-domain bumpy wavefield
qb Observed time-domain bumpy wavefield
pa Modelled time-domain absolute-valued wavefield
q̃b Observed bumpy wavefield in frequency–wavenumber domain
p̃b Modelled bumpy wavefield in frequency–wavenumber domain
q̃a Observed absolute-valued wavefield in frequency–wavenumber domain
p̃a Modelled absolute-valued wavefield in frequency–wavenumber domain
φ Source time function
Jls Least-squares objective function
Jb Bump objective function
b Blurring function
b̃ Blurring function in frequency–wavenumber domain
σ t Time-blurring parameter
σ r Receiver-array-blurring parameter
M Model space
D Data space
Db Bumpy-data space
F Forward map to model wavefields
Fb Forward map to create bumpy data
c Wave speed
ρ Mass density

2 R E V I E W O F T H E L E A S T - S Q UA R E S
I N V E R S I O N

The classic least-squares inversion aims to find a model in M,
a set of possible models of the subsurface, which minimizes the
functional (Tarantola 1984),

Jls = 1

2

∑
s

∑
r

∑
t

[p(xr , xs, t) − q(xr , xs, t)]2 . (1)

Here, q(xr , xs, t) is the observed pressure for a source at position
xs and receiver at xr as a function of time t. The modelled data
are denoted by p(xr , xs, t). Both q and p belong to the data space
denoted by D. The operator F : M → D requires the solution of
a wave equation to provide data in the data space D for a given
model in M. For the examples in this paper, we will consider the
2-D acoustic wave equation

1

ρc2

∂2 p

∂t
− ∇ · 1

ρ
∇ p = φ(t)δ(x − xs), (2)

with pressure p(x, xs, t), sound speed c(x), mass density ρ(x) and
source signature φ(t). In 2-D, x = (x, z). We use a time-domain
staggered-grid finite-difference code to model the pressure wave-
field required to perform the forward and the adjoint wavefield
computations (Tarantola 1984; Fichtner 2010). Absorbing bound-
ary conditions are used on all sides of the computational do-
main except for a realistic example, where reflections from the
boundary at z = 0 are included. We assume that the source sig-
nature, φ(t), is known in our examples. In all our examples, we
perform full-bandwidth inversion as opposed to the multiscale
inversion approach (Bunks et al. 1995) that relies on the low-
frequency information in the data. The optimizations are performed
by the conjugate-gradient method. The gradient at each iteration
is preconditioned by the type 1 migration weights of Plessix &
Mulder (2004).

3 T H E B U M P F U N C T I O NA L

3.1 Definition

To compute the bump functional, the modelled and the observed
data should be mapped into the space Db of bumpy data. The ob-
served and modelled data in bumpy-data space are denoted by pb

and qb, respectively. A function, Fb : D → Db, maps the modelled
data into the bumpy-data space and is given by

pb(xr , xs, t) = Fb[σt , σr , p, ε](xr , xs, t) = b(xr , σr ) ∗r

×
[
b(t, σt ) ∗t

√
p2(xr , xs, t) + ε2

]
. (3)

The non-zero constant ε makes pb differentiable at p = 0. We chose ε

much smaller than p, such that
√

p2(xr , xs, t) + ε2 � |p(xr , xs, t)|.
In the above equation, b is a blurring function for which we choose
a Gaussian with standard deviation equal to either σ t when blurring
in time or σ r when blurring in one of the receiver coordinates.
Convolution in time is denoted by ∗t , and along the receiver position,
xr , by ∗r .

The nonlinear mapping Fb replaces the arrivals in the data with
bumps and is non-injective due to the following reasons:

(i) pb ≥ 0, irrespective of the polarity of arrivals in p,
(ii) depending on the amount of blurring, pb is less dependent on

the source signature and
(iii) the blurring operation removes the details from p, depending

on the blurring parameters, σ t and σ r.

The blurring parameters control the amount of blurring applied to
the absolute-valued data and determine the width of the resulting
bumps. For example, choosing σ t = τ d and σ r = 0, where τ d = 1/fd

is the period of the data corresponding to the dominant frequency
fd, would blur an impulsive arrival in the absolute-valued data such
that it is spread roughly over 2τ d in time. Similarly, choosing σ t =
0 and σ r = λd, where λd = cr/fd is the wavelength corresponding
to the velocity, cr, close to the receivers, would blur an impulsive
arrival in the absolute-valued data such that it is spread roughly over
receivers within a distance of 2λd.

The bump functional, Jb, is the least-squares difference between
the observed and the modelled bumpy data:

Jb = 1

2

∑
s

∑
r

∑
t

[pb(xr , xs, t) − qb(xr , xs, t)]2 . (4)

Inversion based on Jb produces a model in M that minimizes the
difference between pb and qb. Details on the gradient computation
of the bump functional with respect to the medium parameters
are given in the Appendix. Note that minimizing their difference
does not necessarily reduce the difference between p and q, since
the bump functional is insensitive to the polarity of the events in
the data. Also note that the bump functional with the parameters
σ t/τ d = 0.5 and σ r = 0 closely resemble the envelope-based misfit
(Bozdağ et al. 2011).

3.2 Characteristics

The main characteristics of inversion with the bump functional are
listed next.

3.2.1 Insensitivity to cycle skipping

The bump-functional inversion is less sensitive to cycle skipping
even in the absence of low frequencies in the data. This is due to the
fact that it fits the bumpy data, as in eq. (4), which are non-oscillatory
if sufficient blurring is applied.

3.2.2 Global-convergence robustness

While computing the bump functional, the absolute-valued data are
blurred in time and/or along a receiver coordinate, as in eq. (3). The
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role of the blurring is to increase the size of the basin of attraction
of the objective function compared to that of the envelope-based
misfit. The global-convergence robustness of Jb inversion, when
using gradient-based optimization, increases with the amount of
blurring applied to the absolute-valued data. Intuitively, after taking
the absolute value, a single pulse in the modelled data will still
not be able to sense a corresponding pulse in the observed data if
they are separated in time. Large amounts of blurring increases the
width of the observed and modelled bumps, so that they can sense
each other in time during the inversion. In other words, blurring
is essential to make the bump functional sensitive to large arrival-
time errors. Since the bumpy data become simpler with increased
blurring, it is easier to find models that fit them.

3.2.3 Non-uniqueness

The price paid for blurring is a loss of resolution and an increase of
non-uniqueness. Since the mapping Fb : D → Db is non-injective,
the inverse problem of estimating a model that minimizes the bump
functional suffers from non-uniqueness, which gets worse with the
amount of blurring applied in the eq. (3). Note that the least-squares
inversion also suffers from non-uniqueness due to band-limitation of
the data and lack of illumination, making regularization necessary
to obtain an acceptable solution. The bump functional inversion
suffers from non-uniqueness even when the same regularization as
for the least-squares inversion is used.

Once the bump functional is minimized, the observed and mod-
elled bumpy data match each other. However, this does not imply
that the modelled data fit the observed data very well. The mod-
elled arrivals can have the opposite polarity as well as a different
wavelet, compared to the observed arrivals. Furthermore, the mod-
elled data can contain ancillary false arrivals that are not present
in the observed data. This prevents the bump-functional inversion
from correctly updating the background velocity while fitting the

reflected arrivals. The bump functional inversion might result in a
model with many high-wavenumber artefacts that generate the false
arrivals. Next, we will discuss some simple examples to illustrate
these characteristics.

3.3 Illustrative examples using the bump functional

3.3.1 Two arrivals

As a very simple example, we assume that both the observed and the
modelled data to contain a single record with two arrivals. For the
first arrival, w1(t), we use a Ricker wavelet with a peak frequency of
20 Hz and a band-limitation of 10–15–50–60 Hz. We used the same
Ricker wavelet with a band-limitation of 15–17–23–25 Hz for the
second arrival, w2(t). The arrivals do not contain any low-frequency
information. The modelled and ‘observed’ data are then chosen as

p(t) = w1(t + β − β0) + 0.6 w2(t + γ − γ0),

q(t) = w1(t − β0) + 0.6 w2(t − γ0).

To the observed data, we added 20 per cent of white random noise.
The model parameters were chosen as β0 = 2.16 s and γ 0 = 2.55 s.
Fig. 1 plots the observed and modelled data in blue and red, respec-
tively. The inversion parameters are the arrival-time errors, β and
γ . Both should be zero at the global minimum. We now consider
the inverse problem of estimating the arrival times using different
objective functionals.

3.3.2 Least-squares functional

Fig. 2(a) shows the classic least-squares functional, Jls = ∫
[p(t) −

q(t)]2dt, as a function of the arrival-time errors. The oscillatory
nature of the arrivals causes various local minima to occur around
the global minimum, shrinking the radius of the basin of attraction.

Figure 1. The observed and modelled data with two arrivals are plotted in blue and red, respectively. (a) The arrival-time error in the modelled arrivals is more
than the dominant period, τ d. (b) Absolute-valued data. (c) Bumpy data obtained using σ t/τ d = 0.5, (d) σ t/τ d = 1, (e) σ t/τ d = 2 and (f) σ t/τ d = 4.
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Figure 2. Various objective functions are plotted as a function of the arrival-time errors, γ and β, for the observed and modelled data shown in Fig. 1. The
basin of attraction is outlined by a black circle. (a) The least-squares functional, Jls. (b) The envelope-based misfit. (c) The bump functional, Jb, with σ t/τ d =
0.5, (d) σ t/τ d = 1, (e) σ t/τ d = 2, and (f) with σ t/τ d = 4.

In this case, the radius of the basin is approximately τ d/2 = 0.025 s,
where, again, τ d denotes the period of the dominant frequency. In
the multiscale inversion approach (Bunks et al. 1995), a low-pass
filter is applied to the data to first fit the lowest reliable frequencies.
The radius of the basin is then half the period corresponding to the
lowest frequency, τmax = 0.1 s. This implies that, if the arrival-time
error in the initially modelled data exceeds 0.1 s, the least-squares
inversion cannot accurately estimate the arrival times.

3.3.3 Envelope-based misfit

The envelope-based misfit (Bozdağ et al. 2011) computes the least-
squares error using the observed and the modelled envelopes. In
this example, Fig. 2(b) shows that the misfit suffers less from cycle
skipping and local minima do not occur close to the global minimum
because the envelopes are non-oscillatory. In this case, the radius
of attraction roughly equals the dominant period, τ d = 0.05 s. It
can be seen that the functional is insensitive to arrival-time shifts
larger than τ d, when there is no overlap between the observed and
modelled data envelopes.

3.3.4 Bump functional

To compute the bump functional, the absolute-valued data are con-
sidered, as plotted in Fig. 1(b). The choice of σ t determines the
amount of blurring applied to the absolute-valued data. For σ t/τ d =
0.5, the observed and modelled bumps, as plotted in Fig. 1(c), are
similar to envelopes. In this case, the bump functional has charac-
teristics similar to the envelope-based misfit, as plotted in Fig. 2(c).
In general, for any given σ t, since the observed and the modelled
bumps are non-oscillatory, the bump functional suffers less from
cycle skipping.

In order to corroborate our claim that the global-convergence
robustness of Jb depends on the amount of blurring, we now examine
the bump functional for different values of σ t. The bumpy data for
different values of σ t are plotted in Figs 1(c)–(f). As can be seen
in Figs 2(d)–(f), the radius of the attraction circle of the bump
functional increases with σ t. With increased blurring, the separated
bumps of the observed and modelled data can sense each other
in time, resulting in an improved global-convergence robustness.
Note that the radius of the basin of attraction for Jb, unlike the least-
squares functional, is independent of the presence of low frequencies
in the data. The radius of basin of attraction in the case of σ t/τ d = 4
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Figure 3. Plots corresponding to the two-arrivals example as in Fig. 1. Two inversions (I and II) are performed, starting from different initial values of γ and
β using the bump functional with σ t/τ d = 1. The observed and estimated data are plotted in blue and red, respectively. The initially estimated data are drawn
with a dashed red line. (a) Data corresponding to inversion I. (b) Bumpy data corresponding to inversion I. (c) Same as (a), but for inversion II. (d) Same as
(b), but for inversion II.

and 8 is larger than period corresponding to the minimum frequency
in the data, τmax, which shows that Jb can also be effective in the
absence of low frequencies.

Finally, we show that the data minimizing the bump functional
cannot be determined uniquely. We perform two inversions (I & II)
using the conjugate-gradient method starting from different initial
values of β and γ . During each inversion, we estimate the data that
minimize the bump functional for σ t/τ d = 1. We expect that the
estimated data output from both the inversions to be different while
fitting each other in their bumpy form. This is possible because the
nonlinear mapping Fb is non-injective. The observed and initially
estimated data for both the inversions are plotted in Figs 3(a) and
(c), respectively. The estimated data after the inversions, plotted in
Figs 3(a) and (c), are different and they contain false arrivals and
have polarity mismatches. For both the inversions, the estimated
bumpy data, plotted in Figs 3(b) and (d), at the last iteration do fit
the observed bumpy data.

3.3.5 Cross-well transmission example

We now consider a cross-well experiment with a Gaussian anomaly.
This is a transmission problem for which the background velocity
needs to be estimated. We used evenly spaced vertical arrays of
sources and receivers at x = 1 m and x = 96 m, respectively. The
source wavelet had a peak frequency of 140 Hz. The assumed Earth
model and the corresponding ‘observed’ data are plotted in Figs 4(a)
and 5(a), respectively. The initial velocity model for inversion is
homogeneous with c = 1800 m s−1. The corresponding modelled
data are plotted in Fig. 5(b) and have arrival-time errors of more

than three times the dominant period, T = 0.0071 s. Therefore,
larger amounts of blurring are necessary during the Jb inversion to
ensure that the bumps in the initially modelled data can sense the
bumps in the observed data. We used the Jb functional with σ t/τ d =
0.5, 1, 2 and 4. Gaussian smoothing is applied to the gradient at each
iteration with a standard deviation of 1.5 m in order to avoid high-
wavenumber artefacts in the solution. In all the cases, the iterations
were stopped when the convergence slowed down too much.

Figs 4(b)–(e) show the velocity models and Figs 5(c)–(f) show
the modelled arrivals at the last iteration. For σ t/τ d = 0.5 and
1, the inversion was not able to reconstruct the velocity anomaly,
as in Figs 4(b)–(c), since the Jb functional has a small basin of
attraction. At the last iteration, the observed and the modelled data
in bumpy form do not match each other, as mentioned in Table 1.
Only the error in records with initial arrival-time error less than 2τ d

is minimized (see Figs 5c–d). The Jb inversion with σ t/τ d = 0.5 is
similar to the envelope-based inversion, as shown in the Figs 1 and
2. In the case of σ t/τ d = 2 and 4, the bump functional inversion has
successfully reconstructed the velocity anomaly, as in Figs 4(d) and
(e), proving that the size of the basin of attraction for Jb increases
with the amount of blurring. As shown in the Table 1, the inversion
is able to fit the observed bumpy data. Also, the modelled data after
inversion, shown in Figs 5(e) and (f), reasonably fit the observed data
in Fig. 5(a). Hence these solutions are acceptable as summarized in
the Table 1.

To illustrate the non-uniqueness problem, we choose σ t/τ d = 8
for Jb inversion. At the last iteration, the inversion is able to fit the
observed and the modelled data in bumpy form as mentioned in
Table 1. However, Fig. 5(g) shows that the modelled data do not
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Figure 4. For the cross-well experiment with a Gaussian anomaly, Jb inversion is performed with different amounts of time blurring. The initial model before
inversion is a homogeneous model with c = 1800 m s−1. (a) Earth model with a Gaussian anomaly at the centre. (b) Result using σ t/τ d = 0.5, (c) σ t/τ d = 1,
(d) σ t/τ d = 2, (e) σ t/τ d = 4 and (f) σ t/τ d = 8.

Figure 5. Data panels corresponding to the cross-well experiment in Fig. 4 for a source at (1, 0). Jb inversion is performed using different amounts of time
blurring and σ r = 0. The shot gathers at the last iteration are plotted with the same grey scale. (a) Observed shot gather. (b) Initially modelled shot gather. (c)
Using Jb with σ t/τ d = 0.5, (d) with σ t/τ d = 1, (e) with σ t/τ d = 2, (f) with σ t/τ d = 4 and (g) with σ t/τ d = 8.

Table 1. Convergence of the bump functional for different amounts of
blurring in the case of a cross-well experiment on a Gaussian anomaly.

σ t/τ d pb fits qb p fits q Comment

0.5 no no Lack of sensitivity
1 no no Lack of sensitivity
2 yes yes Acceptable solution
4 yes yes Acceptable solution
8 yes no Non-uniqueness

necessarily fit the observed data. There are many models providing
data that can fit the observed data in their bumpy form. Since the
non-uniqueness becomes more severe with larger amounts of blur-
ring, the inversion fails to reach an acceptable solution, as shown in
Fig. 4(f). Also, false arrivals appear in the modelled data and they
assist in the minimization of the bump functional.

3.3.6 Three-layer reflection example

We consider another example in which the ‘observed’ data contain
primarily reflected arrivals. In the case of reflection problems, both
the background velocity and the position of the reflectors have to
be estimated. The background velocity is determined by the offset-
based moveout information in the data. This example illustrates the
inability of the bump functional to estimate the background velocity
using reflected arrivals. We also show that the velocity model that
minimizes the bump functional cannot be uniquely determined.

We consider an assumed Earth model of 1500 m width and
600 m depth with a negative velocity anomaly of approximately
40 per cent. The velocity model, plotted in Fig. 6, is assumed to
only vary with depth and contains two reflectors at z = 120 m and z
= 320 m. We used a horizontal array of 100 evenly spaced receivers
at a depth of 30 m and a source at (0, 20) m. We generated the
data using a fourth-order minimum-phase Butterworth wavelet of

Figure 6. Results of single-objective Jls inversion of the three-layer reflection example. The initial model (dashed black) before inversion is also shown.
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Figure 7. The shot gathers corresponding to the three-layer reflection ex-
periment in Fig. 6. (a) Observed gather. (b) Cycle-skipped modelled gather
at the last iteration of the Jls inversion.

bandwidth 10–30 Hz. Due to the negative velocity anomaly, head
waves do not arrive at the receivers before 1.2 s recording time.
Fig. 7(a) depicts the ‘observed’ shot gather, where an internal multi-
ple can also be seen. The initial model for inversion is homogeneous
with c = 2500 m s−1. The spatial sampling for the inversion mesh
is 6 m.

Fig. 6 shows the result of the Jls inversion. It fails to reconstruct
the background velocity of the model and convergence starts to
become very slow after 20 iterations. After updating the reflectivity
of the first layer, the Jls inversion updates the reflectivity of the model
at depths between 400 and 450 m. This causes the modelled data,
plotted in Fig. 7(b), to partially match the ‘observed’ data, primarily
at the short offsets. We also see that these reflectors, positioned at
the wrong depths, generate arrivals in the data that are cycle-skipped
at larger offsets. This behaviour of least-squares inversion is well
known. The cycle skipping indicates that the solution is caught
in a local minimum. It has to be noted that the results might differ
depending on the coarseness of the inversion mesh (Ma et al. 2012).
We did neither apply smoothing to the gradient at each iteration nor
use any additional smoothness constraints on the model. In the case
of this simple example, we noted that the least-squares inversion
was able to reach the global minimum when the spatial sampling
for the inversion mesh was 10 m.

We have seen that the bump functional does not suffer from
cycle skipping if enough blurring is applied. In order to see if
it can update the background velocity, we performed the bump-
functional inversion with σ t/τ d = 0.5, 1, 2 and 4. No blurring
along the receiver coordinate is applied since this is an illustrative

example. The observed bumpy data for these cases are plotted in
Figs 9(e)–(h). The modelled bumpy data at the final iteration are
displayed in Figs 9(i)–(l). We note that the inversion has matched
the observed and the modelled data in their bumpy form at the last
iteration. However, the resulting velocity models have an incorrect
background velocity, as Fig. 8 shows. The Jb inversion has not
updated the background velocity but only boosted the reflectivity
of the model at depths between 400 and 550 m. In all cases, the
modelled data contain a lot of false arrivals and do not fit the
observed data, as can be seen in Figs 9(a)–(d). These false arrivals
help the Jb inversion in matching the bumpy form of the observed
and modelled data. The false arrivals are caused by several reflectors
at incorrect depths. Even in the presence of moveout information in
the observed data, we see that the bump functional cannot update
the background velocity of the model.

We now perform the bump functional inversion with σ t/τ d =
1 and σ r = 0 starting from two different initial models (I and
II), plotted in Fig. 10. The output models in both the cases are
different in a non-trivial way since the data corresponding to them,
plotted in Figs 11(a) and (b), do not match each other. However,
the bumpy data corresponding to the output models, plotted in
Figs 11(c) and (d), are similar. This shows that the velocity model
that explains the observed-bumpy reflections is not unique. Due to
this, the bump functional inversion fails to output a model with
the correct background velocity, even though it suffers less from
cycle-skipping.

4 M U LT I - O B J E C T I V E I N V E R S I O N

As mentioned before, least-squares inversion suffers from cycle
skipping and cannot recover velocity errors that cause arrival-time
errors larger than τ d/2. Let Mls denote a set that includes all the
models corresponding to the local minima of the least-squares ob-
jective function, excluding the global minimum. We assume that the
bump functional does not suffer from cycle skipping, for particular
values of σ t and σ r, and let Mb denote a set that contains all the
non-unique solutions that minimize it. We state without a proof that
the sets Mls and Mb are disjoint due to the following intuitive
reasons:

(i) A model that belongs to Mls generates data that are cycle-
skipped compared to the observed data, but this model does not
belong to Mb since the bump functional does not suffer from cycle
skipping for sufficiently large blurring.

(ii) A model that belongs to Mb generates data that contain false
arrivals, but this model does not belong toMls because false arrivals
increase the least-squares functional.

Figure 8. Same as Fig. 6, except that the bump functional is used with different amounts of time blurring and σ r = 0.
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Figure 9. Modelled shot gathers after Jb inversion corresponding to the reflection experiment in Fig. 8. No blurring is applied along the receiver array (σ r =
0) in all cases. (a) Data using σ t/τ d = 0.5, (b) σ t/τ d = 1, (c) σ t/τ d = 2 and (d) σ t/τ d = 4. (e) Observed bumpy data using σ t/τ d = 0.5, (f) σ t/τ d = 1, (g)
σ t/τ d = 2 and (h) σ t/τ d = 4. (i) Modelled bumpy data after Jb inversion using σ t/τ d = 0.5, (j) σ t/τ d = 1, (k) σ t/τ d = 2 and (l) σ t/τ d = 4.

Figure 10. Same as Fig. 6, except that the bump functional is used with σ t/τ d = 1 and σ r = 0. Two different initial models were used for inversion.

This motivates the use of both the least-squares and the bump func-
tional in the inversion. In the inversion strategy, the primary objec-
tive is to minimize the least-squares difference. It is also used to
constrain the model space Mb. Minimization of the bump func-
tional is an auxiliary objective needed to move away from models
that belong to Mls .

4.1 Strategy

The multi-objective inversion scheme we use throughout this paper
is given in Fig. 12. The inversion consists of several round-trips de-
pending on how far the starting model is from the global minimum.

Within each round-trip, we optimize both the Jb and Jls objec-
tives separately. During each individual optimization, we update the
subsurface models and the iterations are stopped whenever conver-
gence becomes too slow. The multi-objective inversion stops when
the change in the output between consecutive round-trips is neg-
ligible. This implies that the inversion has converged to a model
that simultaneously minimizes the least-squares and the bump
functional.

We start with the bump-functional inversion, where strong blur-
ring is chosen both in time and along the receiver coordinate. Then,
we gradually reduce the blurring and, at the same time, perform
more iterations. The motivation for starting with strong blurring is
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Figure 11. Single-objective bump functional inversion using σ t/τ d = 1 and σ r = 0 starting from two different initial models (I and II), as plotted in Fig. 10.
(a) Modelled data at the last iteration using initial model I and (b) initial model II. (c) Modelled bumpy data at last iteration using initial model I and (d) initial
model II.

Figure 12. Flowchart of multi-objective inversion strategy.
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Table 2. Blurring parameters used in different examples during the multi-
objective inversion. Strong blurring is chosen initially depending on the
complexity of the example. The blurring is then reduced to the lowest as
shown in Fig. 12. The multi-objective inversion is not sensitive to the exact
blurring parameters chosen.

Example Initial strong blurring Reduced lowest blurring
(σ t/τ d, σ r/λd) (σ t/τ d, σ r/λd)

Three-layer reflection skipped (1, 0)
Cross-well with field data (1.5, 1.0) (0.5, 0)
Five layer: early arrivals (1.0, 0.5) (0.5, 0)
Five layer: all arrivals (1.5, 1.0) (0.5, 0)
Complex 2-D model (1.0, 0.5) (0.5, 0)

that it allows the observed and modelled bumps, if they are far apart,
to interact with each other so that the time gap between them can be
closed. Once the bumps are close enough, inversion with a smaller
amount of blurring will provide a fit with better resolution. Instead
of choosing strong initial blurring, the amount of blurring can also
be chosen according to the complexity of the problem and hence
by considering the initially modelled data. A strong initial blurring,
in time and along the receiver coordinate, can be used only if the
arrival-time errors are large in the initial comparison between the
modelled and observed data. Otherwise, if the arrival-time errors
are low, the data are blurred either in time or along the receiver
coordinate using a small amount of initial blurring. This will reduce
the computational burden of the multi-objective inversion. Note that
the purpose of blurring is to just create an overlap between the mod-
elled and the corresponding observed bumpy arrivals. As long as
this overlap is created, the exact choice of blurring parameters will
not affect the multi-objective inversion. The resulting model that
minimizes the bump functional is non-unique and its correspond-
ing data will contain false arrivals. We therefore use the output
of the bump-functional optimization as input to the least-squares
optimization to complete a round-trip. The least-squares objective
removes the false arrivals that are not present in the observed data.
However, it could happen that the least-squares optimization now
converges to a local minimum. Then we use the output correspond-
ing to the, possibly local, minimum of the least-squares inversion
from the first round-trip as input to the bump-functional optimiza-
tion. The auxiliary bump objective now pulls the solution out of the
local minimum, since it does not suffer from cycle skipping. Sub-
sequently, we carry out more round-trips to converge to the global
minimum of the least-squares objective.

4.2 Three-layer reflection example, again

To demonstrate the effectiveness of our multi-objective inversion
scheme, we consider the same three-layer reflection example with
a negative velocity anomaly as used before for single-objective
inversion with either Jls or Jb. In each round-trip, we first use the
bump functional, followed by minimization of the least-squares
functional, as shown in the Fig. 12. The blurring parameters used in
this case are given in the Table 2. For this simple example, we did
not use the bump functional with strong blurring. The final model
after 9 round-trips is plotted in green in Fig. 13. The corresponding
modelled shot gather, plotted in Fig. 14(f), is not cycle-skipped
when compared to the observed shot gather in the Fig. 7(a).

During the first round-trip, the bump functional inversion out-
puts a model that belongs to Mb as shown in Fig. 13. The modelled
data corresponding to this model, in Fig. 14(a), has false arrivals
due to strong reflectivity around z = 450 m. We note that the Jls

optimization removes those false arrivals that are not present in the
observed data, as visible in Fig. 14(b). The Jls inversion converges
to a local minimum, where the modelled data are cycle-skipped
compared to the observed data. We now use the bump functional
to pull the trapped solution out of the local minimum during the
second round-trip. The output model and the corresponding mod-
elled data are plotted in Figs 13 and 14(c), respectively. We note
that whenever the least-squares objective removes the false arrivals,
it updates the background velocity of the model. Jls inversion again
converges to another local minimum that is closer to the global min-
imum than after the first round-trip. This behaviour is reminiscent
of Mora’s (1989) observation that the Jls functional can provide
low-wavenumber updates to the velocity model, provided the re-
flectivity is strong enough to allow for an interaction between the
scattered and the direct wavefield. In our case, after each round-trip,
the output of the least-squares inversion suffers less and less from
cycle skipping and provides convergence to the global minimum.

5 R E A L I S T I C E X A M P L E S

5.1 Cross-well example with field data

We consider a cross-well experiment to demonstrate the applicabil-
ity of the multi-objective inversion strategy to field data. The field
data were also used by van Leeuwen (2010) and van Leeuwen
& Mulder (2010) to perform wave-equation based traveltime

Figure 13. Same as Fig. 6, but now with the proposed multi-objective inversion scheme. The bump functional with σ t/τ d = 1.0 and no receiver blurring
(σ r = 0) is used along with the least-squares objective.
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Figure 14. Modelled shot gathers at the last iteration corresponding to the multi-objective inversion in Figs 13. (a) After the first Jb inversion. (b) After the
first Jls inversion. (c) After the second Jb inversion. (d) After the second Jls inversion. (e) After the third Jb inversion. (f) After the third Jls inversion.

Figure 15. A synthetic cross-well example. (a) c and (b) ρ models after interpolating the well-logs used for forward modelling. (c) Multi-objective inversion
output c model using synthetic data from the well-log models. The output c and ρ models are only allowed to vary with depth. The ρ model is not shown.

tomography with a cross-correlation type functional. Two wells
are located at x = 205 m and x = 27 m with 122 sources and 125
receivers, respectively. The source and receiver spacing interval is
approximately 3.84 m. The velocity and density Earth models after
interpolating the well-log data are plotted in Figs 15(a) and (b).
During the inversion, both velocity and density are estimated and a
110-Hz Ricker source wavelet is used. We choose a homogeneous
initial velocity model with c = 2500 m s−1 for inversion such that the
arrival-time error in the initially modelled data, plotted in Fig. 16(c),
exceeds the dominant period by a factor 2 to 3. Due to this reason, Jb

inversion with high blurring is used initially in the multi-objective
inversion strategy, which is outlined in the Fig. 12. The blurring
parameters used during the multi-objective inversion are given in

Table 2. It is expected that the single-objective Jls inversion suffers
from cycle-skipping.

5.1.1 Synthetic data inversion

We first use the interpolated well-log models to generate synthetic
pressure data, as plotted in Fig. 16(a). While inverting these data,
the output models are only allowed to vary with depth. The bumpy
‘observed’ data used during the inversion are plotted in Figs 17(a)
and (c). The multi-objective inversion results in the final velocity
model plotted in Fig. 15(c). The modelled data after the final itera-
tion, plotted in Fig. 16(d), match the synthetic observed data. And
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Figure 16. Shot gathers corresponding to the cross-well experiment in
Figs 15 and 18 for a source at (205, 199) m. (a) Synthetic data using in-
terpolated well-log models. (b) Observed field data. (c) Initially modelled
data for synthetic and field data inversion. (d) Modelled data after synthetic
data multi-objective inversion, to be compared to (a). (e) Modelled data
after field data inversion, to be compared to (b). (f) Same as (e), but after
single-objective Jls inversion.

the modelled bumpy data after the inversion, plotted in Figs 17(b)
and (d), match the observed bumpy data.

5.1.2 Field data inversion

Under the acoustic approximation, we assumed that the recorded
x-component data generated by x-component sources are not too dif-
ferent from acoustic pressure data generated by explosive sources.
We band-limited the observed data to the range between 80 and
120 Hz, such that the low frequencies are removed. Attenuation is
not taken into account, but during pre-processing, an amplitude-
versus-offset correction was applied to the observed data using the
initially modelled data, following Brenders & Pratt (2007). The ob-
served shot gather for a source at (205, 199) is shown in Fig. 16(b).
Both single- and multi-objective inversions in this case are per-

Figure 18. A cross-well example with field data and well-logs plotted in
Figs 15(a) and (b). The output ρ models are not shown. (a) Reconstructed c
model from the field data using the single-objective Jls inversion. (b) Same
as (a), but using the multi-objective inversion strategy.

formed in two stages. During the first stage, the subsurface models
are allowed to vary only with depth. Then, the output is used as
a starting model to estimate the final results that vary in both the
x- and z-coordinates.

Single-objective Jls inversion outputs the velocity model plot-
ted in Fig. 18(a) that varies both in the x- and z-coordinates. The
corresponding modelled shot gather in Fig. 16(f) is cycle skipped
compared to the observed shot gather in Fig. 16(b): note the arrivals
around the red square. The multi-objective inversion results in the
final velocity model plotted in Fig. 18(b) that also varies both in
the x- and z-coordinates. The modelled shot gather after inversion,
plotted in Fig. 16(e), matches the observed shot gather in Fig. 16(b).
The modelled bumpy data, plotted in Figs 17(f) and (h), match the
observed bumpy data in Figs 17(e) and (g) after the inversion. Fi-
nally, Fig. 19 displays vertical cross-sections of the synthetic- and
field-data multi-objective inversion results.

Figure 17. Bumpy shot gathers corresponding to the cross-well experiment in Figs 15 and 18 for a source at (205, 199) m. (a) Observed and (b) modelled
gathers after synthetic data inversion using σ t/τ d = 1.5 and σ r/λd = 1.0. (c) Observed and (d) modelled gathers after synthetic data inversion using σ t/τ d =
0.5 and σ r = 0. (e) Observed and (f) modelled gathers after field data inversion using σ t/τ d = 1.5 and σ r/λd = 1.0. (g) Observed and (h) modelled gathers
after field data inversion using σ t/τ d = 0.5 and σ r = 0.



FWI with an auxiliary bump functional 1089

Figure 19. Output models for the cross-well experiment. For the synthetic data inversion, the output in Fig. 15(c) varies only with depth and is plotted in blue.
A cross-section at x = 110 m, obtained from the field data and corresponding to the reconstructed model in Fig. 18(b), is plotted in red.

Figure 20. Plot corresponding to the five-layer example. The actual (solid black) and initial (dashed black) models are plotted. Single-objective Jls inversion
result is plotted in red. The multi-objective inversion scheme, depicted in Fig. 12, results in a model plotted in green.

Figure 21. The shot gathers corresponding to the results in Fig. 20. (a) Observed gather. (b) Initially modelled gather. (c) Modelled gather after single-objective
Jls inversion. (d) Modelled gather after multi-objective inversion.

5.2 Five-layer example

We now numerically test the applicability of the multi-objective
strategy when:

(i) the data are acquired at sufficiently long offsets to contain
refracted waves and

(ii) the data contain many arrivals including free-surface reflec-
tion as well as refraction multiples.

A somewhat more realistic five-layer Earth model of 6000 m width
and 2500 m depth is assumed and the velocity varies with depth as
depicted in Fig. 20. We placed an evenly spaced horizontal array
of 200 receivers at a depth of 10 m. A source is placed at (0, 10)
such that the maximum offset in the data is 6000 m. We generated
‘observed’ data using a fourth-order minimum-phase Butterworth
source wavelet of bandwidth 5–10 Hz. The ‘observed’ shot gather,
plotted in Fig. 21(a), contains refractions due to high-velocity con-
trasts at the interfaces just below 750 and 1200 m. We choose a
free-surface boundary condition so that free-surface multiples are
present in the data. The initial velocity model, plotted in Fig. 20,

has an incorrect background velocity. The modelled data using the
initial velocity model are plotted in Fig. 21(b).

We now perform the multi-objective inversion depicted in Fig. 12.
Each round-trip consists of two different optimization stages. Dur-
ing the first stage, we used the blurring parameters as in Table 2
with time windowing to fit only the early refracted arrivals at off-
sets larger than 2000 m. The inversion model grid spacing during
these optimizations is 50 m and a Gaussian with standard devia-
tion of 210 m is used for gradient smoothing. In the next stage, the
optimizations minimize the error in the entire shot gather without
windowing and use the blurring parameters given in Table 2. The
model spatial sampling is 30 m. The standard deviation of the Gaus-
sian used for gradient smoothing is 60 m. The modelled data after
five round-trips, plotted in Fig. 21(d), match the synthetic observed
data. The corresponding output velocity model is plotted in Fig. 20.

We now perform the single-objective Jls inversion also in two
stages that are described above. Single-objective Jls inversion fails
to reconstruct the background velocity of the model, as plotted in
Fig. 20. Also, the modelled data at the last iteration, plotted in
Fig. 21(c), do not fit the observed data.
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Figure 22. A 2-D reflection experiment on a complex model with a high-velocity structure. The initial model for inversion is homogeneous with c = 3000 m s−1.
(a) Actual velocity model. (b) Single-objective Jls inversion result. (c) Single-objective Jb inversion result using σ t/τ d = 1 and σ r/λd = 0.5. (d) Result from
the multi-objective inversion strategy, outlined in Fig. 12, after 10 inversion round-trips.

5.3 Complex 2-D model with reflection data

Fig. 22(a) depicts an assumed Earth model of 4800 m width and
1280 m depth with a high-velocity structure. We placed an evenly
spaced horizontal array of 60 sources and 100 receivers at a depth of
20 m. We used a 5–12-Hz fourth-order minimum-phase Butterworth
source wavelet. The ‘observed’ data generated for the actual model
do not contain any refracted arrival due to the negative velocity
anomaly at shallow depths. The initial velocity model for inversion
is homogeneous with c = 3000 m s−1. The background velocity of
the model has to be reconstructed using only the reflected arrivals
in the data. In order to reduce high-wavenumber artefacts, we apply
Gaussian smoothing to the gradient at each iteration with a standard
deviation of 32 m. The single-objective Jls inversion results in a
model with an incorrect background velocity, plotted in Fig. 22(b).
We started again from the homogeneous model but now with the
bump functional, setting σ t/τ d = 1 and σ r/λd = 0.5. As expected,
the single-objective bump functional inversion results in a model
that does not have the correct background velocity, as can be seen
in Fig. 22(c). Finally, we performed 10 round-trips using the multi-
objective inversion strategy, outlined in Fig. 12. The multi-objective
inversion uses the blurring parameters as in Table 2. The resulting
velocity model is plotted in Fig. 22(d) and resembles the actual
velocity model fairly well.

6 C O N C LU S I O N S

We have formulated a data-domain functional that matches the
observed and the modelled data in a simplified form. It can be
viewed as a generalized envelope-based misfit. The simplifica-
tion results in bumpy data, obtained by taking the absolute value
of the data and subsequent smoothing or blurring with a Gaus-
sian. Using numerical examples involving transmission or reflec-
tion data, we illustrated the following characteristics of the bump
functional:

(i) the functional is less sensitive to cycle skipping and does not
rely on the low frequencies present in the data;

(ii) blurring increases the size of the basin of attraction that
corresponds to the functional and hence its global-convergence
robustness;

(iii) the bump-functional inversion suffers from the fact that
the model that matches given bumpy data tends to be highly
non-unique.

Single-objective bump-functional inversion can produce accept-
able results while fitting transmitted arrivals. Whereas in the case of
reflected arrivals, the non-uniqueness prevents the bump functional
to update the background velocity of the model. Therefore, in order
to reach the global minimum corresponding to the least-squares ob-
jective, we proposed a multi-objective inversion scheme that uses
the bump functional as an auxiliary functional. We demonstrated
the potential of the bump functional to pull the trapped solution out
of the least-squares local minimum whenever necessary. Finally, we
have tested the applicability of the multi-objective inversion scheme
using realistic numerical examples as well as cross-well field data.
In all the cases, the scheme found the model that well explains the
observed data and hence corresponds to the global minimum of the
least-squares functional, even in the absence of low frequencies in
the data.
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A P P E N D I X : A D J O I N T S O U RC E
F U N C T I O N S F O R T H E B U M P
F U N C T I O NA L

The gradient of the bump functional with respect to the medium
parameters, c and ρ, is computed by correlating the forward-
propagated source wavefield with the adjoint wavefield at each point
in the subsurface. This is similar to the gradient computation for
the conventional least-squares inversion, where the adjoint wave-
field is generated by injecting the adjoint source functions from the
receiver positions (Tarantola 1984; Plessix 2006; Fichtner 2010).
The adjoint source functions for the least-squares functional are the
difference between the modelled and the observed data. In order to
compute the adjoint source functions for the bump functional, the
following steps are performed in order:

(i) the difference between the modelled and the observed bumpy
data is calculated,

(ii) time and/or receiver blurring is applied to the difference,
based on σ t and σ r, and

(iii) the result is multiplied with the stabilized sign of the mod-
elled data in the time domain.

The adjoint source functions for the bump functional are given by
∇pJb, where ∇p denotes the derivative with respect to the modelled
data p. Using the chain rule, we write:

∇p Jb = ∇pa Jb ∇p pa,

= ∇pa Jb p [p2 + ε2]−
1
2︸ ︷︷ ︸

sgn(p), when ε is 0

, (A1)
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where ∇pa denotes the derivative with respect to the absolute-
valued-modelled data pa and sgn is the sign function. In order to
derive an expression for ∇pa Jb, we consider the bump functional
in frequency–wavenumber domain. In such a domain, time and/or
receiver blurring corresponds to a simple multiplication with the
blurring function b̃. Without loss of generality, we consider the
case of a regular horizontal array of receivers that record waves
originating from a given source location. Using Parseval’s theo-
rem, we rewrite the expression of the bump functional in eq. (4)
by Fourier transforming the bumpy data from time t and horizontal
receiver coordinate xr to frequency f and horizontal wavenumber
kr as

Jb = 1

2

∑
r

∑
t

[pb(xr , t) − qb(xr , t)]2 ,

= 1

8π 2

∑
r

∑
f

| p̃b(kr , f ) − q̃b(kr , f )|2, (A2)

where we used the fact that pb and qb are real valued. Here,
p̃b and q̃b denote the modelled and the observed bumpy
data in the f–kr domain, respectively. In the f–kr domain,
the bumpy data are obtained by multiplying the absolute-
valued data, p̃a and q̃a , with the blurring function b̃, so we
have

Jb = 1

8π 2

∑
r

∑
f

|b̃( f, σt )b̃(kr , σr )[ p̃a(kr , f ) − q̃a(kr , f )]|2.

(A3)

We rewrite the above equation using the real and imaginary parts
of the absolute-valued data as

Jb = 1

8π 2

∑
r

∑
f

b̃2( f, σt )b̃
2(kr , σr )

× {[�( p̃a) − �(q̃a)]2 + [	( p̃a) − 	(q̃a)]2}, (A4)

where we used the fact that the blurring function b̃ is real valued.
We now differentiate the above equation with respect to the real and
imaginary parts of the modelled-absolute-valued data p̃a to obtain

∇ p̃a Jb = ∇�( p̃a ) Jb + ı∇	( p̃a ) Jb

= 1

4π 2
b̃2( f, σt )b̃

2(kr , σr )[ p̃a(kr , f ) − q̃a(kr , f )],

= 1

4π 2
b̃( f, σt )b̃(kr , σr )[ p̃b(kr , f ) − q̃b(kr , f )]. (A5)

Using the chain rule, we can write the derivative of the bump func-
tional with respect to modelled-absolute-valued data in the time
domain as

∇pa Jb =
∑

r

∑
f

∇ p̃a Jb∇pa p̃a,

= b(xr , σr ) ∗r {b(t, σt ) ∗t [pb(xr , t) − qb(xr , t)]} . (A6)

After substituting ∇pa Jb in eq. (A1), we obtain the final expression
to compute the adjoint source functions for the bump functional in
the time domain:

∇p Jb = {b(xr , σr ) ∗r {b(t, σt ) ∗t [pb − qb]}} p [p2 + ε2]−
1
2 .

(A7)


