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SUMMARY

We consider the question of deblending for seismic shot records
generated from simultaneous random sources at different loca-
tions, i.e., how to decompose them into isolated records involv-
ing one source at a time. As an example, seismic-while-drilling
experiments use active drill-string sources and receivers to look
around and ahead of the borehole, but these receivers also record
noise from the operation of the drill bit. A conventional method
for deblending is independent component analysis (ICA), which
assumes a “cocktail-party” mixing model where each receiver
records a linear combination of source signals assumed to be
statistically independent, and where only one source can have
a Gaussian distribution. In this note, we extend the applicabil-
ity of ICA to seismic shot records with markedly more complex
mixing models with unknown wave kinematics, provided the fol-
lowing assumptions are met.

1. The active source is fully controllable, which means that it
can be used to input a wide range of non-Gaussian random
signals into the subsurface.

2. The waves are a linear function of the source, have a finite
speed of propagation, and follow finite-length paths.

The last assumption implies a scale separation, in frequency, be-
tween the mixing matrix elements (Green’s functions) and the
random input signals. In this regime, we show that the key to the
success of ICA is careful windowing to frequency bands over
which the Green’s functions are approximately constant.

INTRODUCTION

There are situations where seismic experiments are to be per-
formed in noisy environments. For example, the records of a
look-ahead seismic system in a borehole environment are con-
taminated due to the noise generated by the operating drill bit
(Rector III and Marion, 1991; Joyce et al., 2001; Aminzadeh
and Dasgupta, 2013). As a result, the receivers will be record-
ing blended data from both the active source and the drill-bit
source. The drill-bit operation could be paused, while perform-
ing the seismic experiment, but this will increase the costs asso-
ciated with the drilling. The blended records could be used for
imaging if the drill-bit signal were exactly known a priori and
used to perform interferometry (by template matching or decon-
volution), but that is unrealistic. Estimating the drill-bit signal
directly from data has traditionally been considered to be dif-
ficult, for the following reasons: 1. The drill-bit signal is not
impulsive, so it lacks the distinguishing features that would al-
low event picking; 2. The wave-propagation model may contain
more than one arrival, so estimating delays is not sufficient in-
formation to be able to extract the pulse; 3. It is impossible to
tell a source signature vs. a Green’s function with only one re-
ceiver, so any method that hopes to lift the ambiguity necessarily
requires two or more receivers – and the number of receivers on

a drill string cannot be large.

Conventionally, independent component analysis (ICA) is used
for blind source separation (BSS) and blind deconvolution in au-
dio signal processing (Hyvärinen and Oja, 2000). In this note,
we apply and extend frequency-domain ICA for BSS (Makino
et al., 2005) to deal with the seismic deblending problem.

The model that ICA can handle is the linear mixtureD1(ω)
...

Dnr (ω)

= H
(

B(ω)
S(ω)

)
, (1)

where B(ω) and S(ω) are the frequency-dependent source sig-
nals assumed to arise from statistically independent random pro-
cesses;1 D1(ω) through Dnr (ω) are the blended signals; and H
is a nr × 2 matrix of numbers. In its simplest incarnation, ICA
finds H as the linear transformation that makes B(ω) and S(ω)
as close to statistically independent as possible (Hyvärinen and
Oja, 2000; Bell and Sejnowski, 1995). At most one process may
be Gaussian for ICA to work.

In the geophysical context, B(ω) and S(ω) could respectively
denote the drill-bit and active source signatures; the matrix H
with columns H1 and H2 would encode wave propagation and
scattering; H1B would be the drill-bit source contribution to the
shot record; and H2S would be the active source contribution
to the shot record. However, the simple instantaneous mixture
model in Equation 1 is unrealistic in geophysics, because it as-
sumes instantaneous propagation of the signals. Instead, we ex-
plain in the next section why the delays associated with multi-
ple scattering contribute to a frequency-dependent mixing matrix
A(ω), so that Equation 1 would be generalized to a convolutive
mixing model.

In the case of audio signals, blind source separation (BSS) for
convolutive mixtures using ICA is performed in either the fre-
quency or time domain (Pedersen et al., 2007). In frequency-
domain BSS algorithms, the deblending problem is transformed
into an instantaneous one in various narrow frequency bins, so
that conventional ICA methods can be directly used (Makino
et al., 2005).

If the goal is to go beyond deblending (i.e., recovery of H1B
and H2S) and perform deconvolution (i.e., recovery of B and S),
the results from ICA from all such bands need to be combined
together to get the final output. This piecing back or combination
operation is not trivial as the outputs of the ICA algorithms in
each frequency bin have unknown row order (permutation) and
scaling, resulting in some fundamental problems in frequency
domain BSS algorithms (Araki et al., 2003). This issue may
jeopardize the applicability of ICA, but this note illustrates that
these complications do not hinder the deblending goal of BSS.

1They are functions of frequency, but the mixture model can equivalently be written with
functions of time.
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Independent component analysis

We analyze the case where the active source signal is fully con-
trollable, so that it can be programmed as a sample of a deliber-
ately non-Gaussian random process, so that separation by ICA is
possible.

MIXING MODEL

We consider a source at the location of the drill bit, xb, gen-
erating a band-limited random signal, B(ω). An active source
is located at xs and inputs a given random signal S(ω) into the
subsurface. Here ω denotes the angular frequency that belongs
to some interval Ω. The locations of the receivers are denoted
by xr. In the Born approximation, the measured records at the
receivers are given by

Dr(ω) = G(xb,xr;ω)B(ω)

+

∫
x

G(xb,x;ω)m(x)G(x,xr;ω)B(ω)dx

+G(xs,xr;ω)S(ω)

+

∫
x

G(xs,x;ω)m(x)G(x,xr;ω)S(ω)dx, (2)

where m denotes the unknown subsurface reflectivity distribu-
tion and G denotes the subsurface Green’s function in the fre-
quency domain. The goal of seismic imaging is to estimate m,
which is achievable when B and S are estimated by deconvo-
lution. Otherwise, at least deblending has to be performed to
decompose the recorded data, as if only one source were used at
a time. Then the isolated active source records can be used for
imaging after a cross-correlation with the known active source
signals. When nr receivers are considered, the data vector D
can be written as the product of a source vector S and a mixing
matrix A as:D1(ω)

...
Dnr (ω)


︸ ︷︷ ︸

D(ω)

=

Ab,1(ω) As,1(ω)
...

...
Ab,nr (ω) As,nr (ω)


︸ ︷︷ ︸

A(ω)

(
B(ω)
S(ω)

)
︸ ︷︷ ︸

S(ω)

. (3)

The mixing matrix is of dimension nr×2 with elements

A j,r(ω) = G(x j,xr;ω)

+

∫
x

G(x j,x;ω)m(x)G(x,xr;ω)dx, (4)

where j can either be b or s. The deblended signals at a receiver
with index r are given by

Q(ω) =

(
Qb,r
Qs,r

)
=

(
Ab,rB
As,rS

)
. (5)

Note that a windowed Fourier transform with length T is applied
to the time-domain data that are recorded in the field in order to
form the data vector D in the first place. Also note that a similar
mixing equation, similar to Equation 3, can be written even if
there is multiple scattering, albeit with more complicated matrix
A elements.

We now aim to estimate the random source signals B and S, and
the elements of the matrix A of Equation 3. This is the sub-

ject of frequency-domain blind source separation methods (Ped-
ersen et al., 2007), where a frequency bin Ωa ⊂ Ω is consid-
ered, in which the variations of A can be ignored. Therefore,
we have A(ω) ≈ H, a constant matrix, ∀ω ∈ Ωa. The maxi-
mum width of this frequency bin Ωa, denoted by |Ωa|, is given
by 2π

τ , where τ is the maximum traveltime of the waves propa-
gating from sources to the receivers. In every Ωa, we can write
an instantaneous mixing model using the frequency-independent
matrix H as Da = HSa, where the subscript a is used to denote
the element-wise multiplication of the data and source vectors
with a boxcar function of support Ωa. This instantaneous mix-
ing model can be easily solved using ICA to output a separation
or unmixing matrix W and its corresponding estimated source
signal vector Ŝa such that Ŝa = WDa, where Sa = LP Ŝa. Here
L and P are a diagonal scaling and a permutation matrix that
are necessary to match the estimated source signals Ŝa to the ac-
tual source signals Sa; however, as is well known, L and P are
individually undetermined by ICA.

Furthermore, in order to perform ICA in Ωa, we need to have as
many random samples of Sa as possible (see numerical example
in Figure 1a). In other words, the frequency resolution ∆ω = 2π

T ,
scale at which Da and Sa oscillate, has to be much smaller than
|Ωa|. This is possible by appropriately choosing T for the win-
dowed Fourier transform such that T � τ . On the other hand, T
is limited by the total recording time at the receivers. The seis-
mic imaging system will be impractical when the recording time
is too large compared to the wave-propagation time. Note that
the propagation time τ increases, when there is multiple scatter-
ing.

Now, after estimating Ŝa in every Ωa with an assumption that the
elements of Sa are statistically independent, the next step is to
combine the outputs together to form an estimated source signal
vector over the entire interval Ω. We denote such a source signal
vector by Ŝ, it matches the actual source signal vector S up to
a global permutation and scaling i.e., S = LP Ŝ, where P and L
denote global permutation and scaling matrices. The combining
operation is trivial only if the scaling and permutation matrices,
L and P, in every Ωa are known. Otherwise, the reconstruction
of Ŝ suffers from the fact that Ŝa has arbitrary scaling and row
order depending on the choice of Ωa (Araki et al., 2003).

Many authors propose using a priori information to estimate the
permutation matrix P (Pedersen et al., 2007). For example, Soon
et al. (1993) and Prasad et al. (2004) use the information about
the direction of wave arrival at the receivers from each source to
sort the elements of Ŝa. Another common method to solve the
permutation problem is to order the output source components
based on their Gaussianity. Low et al. (2004) uses excess kurto-
sis as measure to differentiate a source signal of interest from an
interference signal that is more Gaussian. In this note, we follow
Low et al. (2004) and consider that the drill-bit source is closer
to Gaussian than the active source.

For the choice of L, we follow the simple prescription in Mat-
suoka (2002) and Makino et al. (2005), but note that the result
of BSS (deblending only) does not depend on this choice. This
approach estimates the vector Q of the deblended data at the re-
ceiver at xr, but not the source signatures. The isolated active
source data in Q, which are As,rS, can be used for imaging after
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Independent component analysis
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Figure 1: a). Instantaneous mixture example: relative least-
squares error between the ICA estimated source signals and the
actual signals is plotted as a function of the number of samples
in each frequency bin. Red and cyan curves correspond to the
drill bit and active sources, respectively. b). Same as a), but for
the convolutive mixture in the Marmousi model. The error in
the deblended records due to individual sources is plotted as a
function of |Ωa|.

cross-correlation with known active source signals S.

CHOICE OF RANDOM SIGNALS

In this section, we discuss the random-signal models for B and
S in every band Ωa. We model the drill-bit signal as a Gaussian
process using random i.i.d. variables Xi:

B(ω) =
∑

i

Xi sinc(T [ω− 2π
T i]), Xi ∼ N(0,σ2) (6)

Here, N(0,σ2) denotes Gaussian distribution with zero mean
and standard deviation σ . The standard deviations can be dif-
ferent for each Xi in order to allow model colored drill-bit noise,
and our method would apply to that case as well. We used
a sinc function with width 2π

T in the above equation to limit
the time-window length of windowed Fourier transform to T .
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Figure 2: A 1km×1km section of
the Marmousi II P-wave velocity model
used for numerical experiments involv-
ing convolutive mixtures. The positions
of sources and receivers are indicated by
red stars and blue triangles, respectively.

To model the ac-
tive signal input
in the subsurface,
we use a sim-
ilar equation as
above with ran-
dom variables Y j
(instead of Xi),
obeying a non-
Gaussian distri-
bution. ICA re-
quires the ran-
dom signals S and
B to be statis-
tically independent
i.e., their joint
probability distri-
bution function is given by the product of its marginals,
p(S,B) = p(S)p(B). Obviously, statistical independence Xi and
Y j implies independence of S and B too.
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Figure 3: For the convolutive mixture in the Marmousi model:
a) The elements of the mixing matrix are plotted as a function
of frequency. Solid lines correspond to the receiver with index
r = 1. b). Deblended records after scaling with L are compared
to the active source (cyan) records. Only 1 in every 100 samples
is considered for plotting. c). Same as b), except for the drill bit
source (red).

NUMERICAL EXAMPLES

To estimate the separation matrix in a given Ωa, in our exam-
ples, we used the FastICA algorithm (Hyvärinen, 1999) from the
multivariate statistical analysis package in Julia (Bezanson et al.,
2014). FastICA seeks an orthogonal rotation of pre-whitened
data by minimizing negentropy of the rotated components. It
uses the fact that a Gaussian random variable has minimum ne-
gentropy among all distributions with fixed first and second mo-
ments. We limited the number of FastICA iterations to 200.

Instantaneous Mixture
We consider a simple numerical example, where we choose the
frequency band Ω of both the active and drill-bit sources to have
16384 samples. The goal of this example is to determine the
minimum number of random samples that are necessary to esti-
mate the statistics accurately using ICA. We generated the ran-
dom signals B and S of the source vector S by picking samples
from Gaussian and uniform distributions, respectively. Then,
synthetic data at two receivers are modeled by assuming an in-
stantaneous mixing. We divided Ω into various bins of equal
sizes and perform ICA in each bin individually. Finally, the es-
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Independent component analysis
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Figure 4: For the convolutive mixture in the Marmousi model:
scatter plots between the deblended records Q and the actual drill
bit (red) and active source (cyan) records for different frequency
bin widths. Only 1 in every 40 samples is considered for plotting.

timated components in each bin are combined together to output
Ŝ. The local scaling ambiguity for instantaneous mixing is re-
solved by normalizing each column of the ICA-estimated mix-
ing matrix, and the local permutation ambiguity is resolved by
ordering the source signals using kurtosis. Before comparing
the outputs, Ŝ, with original signals, S, the overall scaling ma-
trix L and permutation matrix P are determined by minimizing
the norm ‖LPŜ−S‖2. Figure 1a plots the relative least-squares
error between LPŜ and S. We see that a minimum number of
samples should be maintained in each frequency bin in order to
estimate the statistics accurately. If we aim for a relative error
in the reconstructed signals below 10−1, there should be at least
103 samples in each bin.

Convolutive Mixture using the Marmousi Model
Now we consider a convolutive mixture with two sources and
two receivers. The active and drill bit sources are located at
depths 1.75km and 1.245km, respectively. The receivers are
also present at these depths, but in a well 1km away from the
source well. We used a time-domain staggered-grid finite-difference
acoustic solver for wave-equation modeling. Here, the P-wave
velocity model in Figure 2 is used to generate the elements of
the frequency-dependent mixing matrix A in Equation 3. These
elements, plotted in Figure 3a, are numerically modeled with a
Ricker source wavelet (peak frequency of 20Hz) and a total sim-

ulated time of τ = 1.2s. We only consider an arbitrary frequency
band [18.7, 21.3]Hz, which includes the dominant frequency, for
simplicity, but without loss of generality. The random drill-bit
signal B is generated by assuming σ = 1 in Equation 6. In or-
der to generate the random active signals S, we picked samples
of Yi from a uniform distribution with Ymin = −2 and Ymax = 2.
The samples for both these signals are picked such that the maxi-
mum recording time as well as the length of the time window for
the short-time Fourier transform is T = 1.2× 104 s. In order to
generate the synthetic data, D, at the receivers, the band-limited
Green’s functions are then convolved with the source signals,
according to Equation 2.

Given D, we now aim to perform deblending at a receiver with
index r = 1, such that the output vector Q contains isolated records
due to individual sources. Therefore, the model in the Equation 3
has to be solved by dividing the entire frequency band into bins
Ωa, estimating statistically independent components in each bin,
followed by combining all the outputs. As shown in the pre-
vious example, we expect the error in the deblended records to
decrease with an increase in the width of each frequency bin
|Ωa|. However, the assumption that the mixing matrix is inde-
pendent of frequency is violated when a large |Ωa| is chosen.
Therefore there is an optimal choice of the frequency-bin width
to best perform deblending. We plotted the relative least-squares
error between the estimated vs. actual deblended records as a
function of |Ωa| in Figure 1b. We see that |Ωa| = 0.04Hz with
512 samples performs optimal deblending in this case. The de-
blended records for the optimal choice of |Ωa| are compared to
the actual records in Figures 3b and 3c, where 1 in every 100
samples is plotted. The scatterplots, in Figure 4, compare the
distance between the estimated and actual Q for values of |Ωa|
greater and lesser than the optimal choice. It can be observed
that the distance between the signals is greater for a non-optimal
choice.

CONCLUSIONS

With an assumption that the active source is fully controllable in
a drilling environment i.e., it can input any given random signal
into the subsurface, we propose a deblending method that uses
independent component analysis (ICA) to separate the active
and drill-bit source signals. While ICA is conventionally used
to solve the instantaneous cocktail-party mixing problem, the
physically accurate mixing model is a more complex convolu-
tion with the Green’s functions. Fortunately, there is a scale sep-
aration between those Green’s functions and the random sources
themselves, which enables ICA after a proper division of the
frequency axis into small bins. We show the potential of the
proposed method using simple numerical examples.
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