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ABSTRACT

Many seismological applications, such as receiver function analysis, earthquake source imaging, and
ambient noise tomography, rely on averaging waveforms to extract coherent information. While
traditional linear stacking methods have been widely used, recent studies have demonstrated the
advantages of nonlinear stacking techniques in enhancing signal-to-noise ratios. Our work effec-
tively generalizes this concept and enables a more sophisticated form of non-linear stacking, using
probabilistic generative models. We discuss the variational formulation of the Symmetric Autoen-
coder (SymAE) and its role in achieving disentanglement within the latent space to extract coherent
information from a collection of seismic waveforms. Disentanglement involves separating the la-
tent space into components for coherent information shared by all waveforms and components for
waveform-specific nuisance information. SymAE employs a generative model that independently
generates waveforms based on coherent and nuisance components, and an inference model that
estimates these components from observed wavefield. By assuming the independence of waveforms
conditioned on coherent information, the model effectively accumulates this information across
multiple waveforms. After training, a metric based on Kullback-Leibler divergence is used to evaluate
the informativeness of individual waveforms, enabling latent-space optimization and the generation
of synthetic seismograms with enhanced signal-to-noise ratios.
To demonstrate the efficacy of our proposed method, we applied it to a data set of teleseismic
displacement waveforms of the P wave from deep-focus earthquakes. By training the SymAE model
on high-magnitude events, we successfully identified seismograms that contained robust source
information. Furthermore, we generated high-resolution virtual seismograms enriched with relevant
coherent source information and less influenced by scattering noise, allowing a deeper understanding
of the characteristics of the earthquake source. Importantly, our method extracts coherent source
information without relying on deconvolution, which is often used in traditional source imaging. This
enables the analysis of complex earthquakes with multiple rupture episodes, a capability that is not
easily achievable with conventional approaches.

Keywords coherent wavefield · seismic deconvolution · autoencoders; probabilistic models · deep learning · neural
networks · unsupervised learning · representation learning · earthquakes · source estimation

1 Introduction

Probabilistic generative models [Goodfellow et al., 2020, Kingma and Welling, 2019, Ho et al., 2020, Rezende and
Mohamed, 2015] have emerged as versatile tools across numerous scientific disciplines. Their applications span
from basic image processing tasks such as compression, denoising, and inpainting to more complex problems like
semi-supervised and unsupervised learning. While the core principles remain consistent, their implementation and
application vary significantly across different fields. Recent advancements have witnessed a growing interest in applying
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# Code Date Time Mw Depth Half Duration Region

1 okt1 2013-05-24 05:44:48 8.30 598.00 35.7 Sea of Okhotsk
2 okt2 2013-05-24 14:56:31 6.70 624.00 5.6 Sea of Okhotsk
3 okt3 2008-07-05 02:12:04 7.70 633.00 17.3 Sea of Okhotsk
4 okt4 2008-11-24 09:02:58 7.30 492.00 10.9 Sea of Okhotsk
5 okt5 2013-10-01 03:38:21 6.70 573.00 5.6 Sea of Okhotsk
6 okt6 2012-08-14 02:59:38 7.70 583.00 17.8 Sea of Okhotsk
7 pb2 2015-11-24 22:45:38 7.60 606.00 16.6 Peru Brazil
8 fiji1 2018-08-19 00:19:40 8.20 600.00 30.8 Fiji Islands
9 fiji2 2018-09-06 15:49:18 7.90 670.00 21.4 Fiji Islands

10 fiji3 2014-11-01 18:57:22 7.10 434.00 - Fiji Islands
11 fiji4 2018-11-18 20:25:46 6.80 540.00 5.8 Fiji Islands
12 fiji5 2021-04-24 00:23:38 6.50 301.00 4.5 Fiji Islands
13 bon1 2015-05-30 11:23:02 7.80 664.00 20.7 Bonin Island Japan Reg
14 van1 2014-03-05 09:56:57 6.30 638.00 3.8 Vanuatu Islands
15 spain 2010-04-11 22:08:12 6.30 609.00 - Spain
16 nbl 1994-06-09 00:33:16 8.20 631.00 20.0 Northern Bolivia

Table 1: SymAE was trained using displacement seismograms of these deep focus earthquakes.

generative models to geophysical data [Song et al., 2021, Xiao et al., 2024, Trappolini et al., 2024, Ren et al., 2024, Sun
et al., 2024]. In geophysics, a crucial aspect of generative model application lies in the physical interpretability of the
generated data. In other words, the ability to generate samples conditioned on physically relevant variables is often
paramount. This necessitates the development of generative models that can not only capture the statistical properties of
the data, but also produce physically meaningful and informative outputs.

This study introduces a novel probabilistic generative model, the Symmetric Autoencoder (SymAE), designed to
extract coherent information from seismological data. Traditional methods for extracting coherent energy often employ
preprocessing steps, such as phase correction and linear stacking, to suppress nuisance variations. Recent advancements
have introduced non-linear stacking [Schimmel et al., 2011, Olivier et al., 2015, Rückemann, 2012, Weaver and
Yoritomo, 2018, Xie et al., 2020] techniques that assign weights to waveforms based on quality assessments. Our
approach extends this concept by performing a non-linear decomposition of waveforms into constituent components.
Subsequently, a neural network learns optimal weights for each component, enabling a more sophisticated form of
non-linear stacking. We refer to this process as accumulating coherent information across waveforms, which we argue
is more effective than traditional stacking methods.

SymAE [Bouchacourt et al., 2018, Bharadwaj et al., 2022] was developed to learn a disentangled representation of the
seismic wavefield to generate waveforms conditioned on coherent information relevant to the task. However, generating
waveforms enriched in coherent information while minimizing the effects of task-irrelevant nuisances was not addressed.
This work introduces a metric for quantifying waveform informativeness based on its contribution to accumulated
coherent information, enabling the generation of relevant waveforms. We pose the extraction of coherent information as
a latent-space optimization problem. This process is data-driven and does not rely on knowledge of the underlying
physical signal model. Additionally, an upgrade to SymAE that is based on spatial transformer networks [Jaderberg
et al., 2015] and attend-infer-repeat networks [Eslami et al., 2016] is proposed to handle traveltime shifts in the observed
time domain waveforms, potentially obviating the need for preprocessing steps like cross-correlation.

Our numerical experiments concentrate on the unsupervised extraction of coherent earthquake source informa-
tion [Dziewonski et al., 1981, Sipkin, 1982, Abercrombie, 2015] from a collection of seismograms. The seismograms of
deep focus earthquakes, listed in Tab. 1, used are obscured by path scattering effects. After learning a representation of
seismograms through SymAE, we demonstrate its application to quantify scattering effects in individual seismograms.
Then, we generate seismograms with reduced path-related noises to gain deeper insight into the characteristics of the
earthquake sources. In addition to real earthquake data, we considered two synthetic earthquake sources for generating
training and testing datasets with roughly 5000 seismograms. These synthetic sources, along with representative path
effects and sample seismograms, are illustrated in Fig. 1. To generate the seismograms, we convolved the synthetic
sources with path effects representing P-arrivals and their coda. Random time shifts, band-limited noise, and normal-
ization were applied to simulate realistic traveltime errors and noises commonly observed in seismological data. The
purpose of the synthetic experiment is to retrieve coherent source time functions from noisy seismograms, as plotted in
Figs. 1g and 1h, without deconvolution using known path effects. To the best of our knowledge, this marks the first
work to discuss the extraction of earthquake source information in an entirely model-free manner.
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Figure 1: Extracting coherent source information from seismograms modeled as the convolution of band-limited source
signatures with path effects, corrupted by noise and time shifts.

While this study focuses on earthquake source estimation, the proposed methodology is applicable to a broader range
of seismological applications. Many seismic tasks involve extracting coherent information from waveforms, such as
receiver function analysis, earthquake source imaging, and ambient noise tomography. These applications often rely on
grouping waveforms based on shared characteristics, either source-related or path-related.

• Receiver function analysis [Zandt and Ammon, 1995, Zheng et al., 2018, Dalai et al., 2021, Bloch et al., 2023],
where coherent information on the near-receiver Earth’s crustal structure should be extracted from waveforms
related to numerous teleseismic earthquake events. Compared to linear stacking [Hu et al., 2015], where
numerous events are required, a non-linear method to extract coherent information can allow for investigation
of azimuthal and epicentral-distance dependence (attributed to anisotropy and 3D orientation) of the receiver
functions.

• Coherent information from station-pair cross-correlations [Weaver, 2001, 2005, Campillo and Paul, 2003,
Wapenaar, 2004, Snieder, 2004] is extracted linearly, where the emergence of this information is proportional
to the square root of the recording time and inversely proportional to the square root of the distance between
stations. The coherent information retrieved in this scenario pertains to the medium between the stations and is
utilized for tomography purposes.

This work utilizes a D-dimensional vector xk
j to represent the measured seismic waveform in the time domain. The

subscript j indicates the source of the waveform (the jth earthquake), and the superscript k indicates the location where
it was measured (the kth receiver). To represent a group of waveforms recorded due to a single earthquake source
(the jth earthquake) and measured at different receivers, we denote it as a set Xj = {xk

j }, where we simply drop
the receiver index k and use a capital letter. Although this paper focuses mainly on source-based groups Xj , we can
similarly establish a notation for receiver-based collections by omitting the source index, denoted as Xk, to tailor the
equations presented here to the application scenarios discussed previously. Finally, to denote a group of waveforms
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for all sources and receivers, we remove the superscript and use the subscript to access the elements, i.e. X = {xi}
represents the group of all measured waveforms, where i iterates over all the source-receiver combinations.

2 Variational Autoencoder

Variational autoencoders [Kingma and Welling, 2013, 2019, Prince, 2023, Bishop, 2023, Higgins et al., 2017, Burgess
et al., 2018, VAE] are a class of probabilistic generative models designed to infer the distribution P (X) from the
observed wavefield. VAE is described as a nonlinear latent variable model, which expresses the probability distribution
of each element xi as an integral over the latent variable z of the joint probability distribution of xi and z:

P (xi) =

∫
P (xi, z) dz =

∫
P (xi | z)P (z) dz. (1)

Here, the likelihood P (xi | z) is the conditional probability of xi given z, modeled as a normal distribution N ,
where its mean and diagonal covariance matrices are produced by a decoder function f of z and parameters ϕ:
P (xi | z, ϕ) = N (xi | f [z, ϕ]). In this work, we parameterize f as a neural network with convolutional layers. The
prior probability of z, denoted as P (z), is also assumed to follow a normal distribution with zero mean 0 and the
identity covariance matrix I: P (z) = N (z | 0, I). In seismology, the latent or hidden variables can be considered as
either the path or source parameters that must be specified to produce the wavefield. In this sense, the decoder f can be
seen as a network performing the forward modeling operation given the latent variables.

In order to determine the decoder parameters ϕ, which control the generation of the wavefield based on the latent
variable setting, VAE aims to maximize the log likelihood of the wavefield X. Assuming independently and identically
distributed waveforms, we can write:

log[P (X | ϕ)] =
∑

i

log[P (xi | ϕ)] =
∑

i

log

[∫
P (xi | z, ϕ)P (z)dz

]
. (2)

Since the log likelihood expressed as an integral over z is intractable [Bishop, 2023], we decompose it into two terms:

log[P (X | ϕ)] =
∑

i

∫
Qi(z) log

[
P (xi | z, ϕ)P (z)

Qi(z)

]
dz+

∑

i

DKL (Qi(z) ∥ P (z | xi, ϕ)) . (3)

It can be shown that this decomposition holds for any auxiliary distribution Qi(z), and it is commonly employed within
the framework of variational inference to facilitate the approximation of intractable integrals. In eq. 3, P (z | xi, ϕ)
is the posterior distribution of z given xi — it specifies the distribution of the path and the source latent variables
responsible for the generation of the waveform xi. The second term here gives a summation over the Kullback-Leibler
(KL) divergence

DKL (Qi(z) ∥ P (z | xi, ϕ)) =

∫
Qi(z) log

[
Qi(z)

P (z | xi, ϕ)

]
dz, (4)

which measures the difference between each auxiliary distribution Qi(z) and the posterior distribution P (z | xi, ϕ). As
the KL divergence is always non-negative (can be shown using Jensen’s inequality), the first term in eq. 3, which is
the Evidence Lower Bound (ELBO), serves as a lower bound on the log-likelihood of the data. VAE focuses on the
maximization of this term, given that the estimation of the posterior P (z | xi, ϕ) in the second term remains intractable.
It has to be noted that the maximization of the ELBO inherently facilitates the minimization of the KL divergence
between Qi(z) and P (z | xi, ϕ).

VAE utilises an encoder network g, parameterized by θ, to perform amortized inference of z. Specifically, the network
g generates auxiliary distributions that are conditioned on the input waveform xi. These auxiliary or approximate
posterior distributions are assumed to be Gaussian distributions. The mean and diagonal covariance of these Gaussian
distributions are determined by the output of the network g when given the input xi and the parameters θ. This is
mathematically represented as Qi(z) = Q(z | xi, θ) = N (z | g[xi, θ]). The underlying rationale is that the encoder
function g, again parameterized using convolutional layers in our case, performs inverse modelling to estimate the
distribution of the source and path parameters given a wavefield xi. Finally, this choice of Qi(z) makes the Evidence
Lower Bound (ELBO) in Eq. 3 for VAEs a function of the parameters ϕ and θ, which is maximized to determine their
optimal values:

L(θ, ϕ) =
∑

i

∫
Q(z | xi, θ) log

[
P (xi | z, ϕ)P (z)

Q(z | xi, θ)

]
dz. (5)
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Using the product rule of the logarithm, the ELBO during the training process is further decomposed into two terms:

L(θ, ϕ) =
∑

i

∫
Q(z | xi, θ) log [P (xi | z, ϕ)] dz−

∑

i

DKL (Q(z | xi, θ) ∥ P (z)) . (6)

The first term represents the reconstruction loss, which measures how accurately the model can reconstruct the original
data from the latent variables. During training, the reconstruction loss term is approximated using a Monte Carlo
estimate, such that

L(θ, ϕ) =
∑

i

log[P (xi | z∗, ϕ)]−
∑

i

DKL (Q(z | xi, θ) ∥ P (z)) , (7)

where z∗ denotes a sample drawn from Q(z | xi, θ). Maximizing this term improves the model’s ability to reproduce
the original data. The second term in eq. 6 acts as a regularizer, minimizing the KL divergence between the approximate
posterior distribution Q(z | xi, θ) and the prior distribution P (z).

In summary, VAE is a type of generative model that is well suited to learning latent representations of seismic data.
They consist of two key components: an encoder g and a decoder f . The encoder maps the input waveforms to a
compressed latent-space representation z. Although VAEs are capable of producing virtual waveforms by drawing
samples from the aggregated posterior distribution 1

I

∑I
i=1 Q(z | xi, θ) of I waveforms, and then processing these

samples through the decoder, their utility is limited. The virtual waveforms generated by a basic VAE often lack a
clear physical interpretation, making it difficult to extract task-relevant information. To address this limitation, recent
research has focused on learning disentangled representations within the VAE framework Burgess et al. [2018]. The
next section will discuss learning such disentangled representations using the symmetric autoencoder.

3 Variational Symmetric Autoencoder

This section discusses the variational formulation of the Symmetric Autoencoder (SymAE). We will explore how
SymAE achieves disentanglement within the latent space, ultimately enabling the extraction of coherent information
from seismic wavefield data. Disentanglement refers to the process of separating the latent space into distinct factors
that correspond to physically meaningful components of the wavefield. This translates to separating the latent space into
factors representing coherent source information and nuisance path information. We consider the task of representing
each group Xj of seismograms, corresponding to a particular earthquake, using a latent space variable z partitioned
into the following components:

• Source component (s): this component captures the source information accumulated from all the seismograms
of Xj . It is shared by all the seismograms within the group, reflecting the common signal originating from the
earthquake itself.

• Path component (pk): this component represents nuisance information, specifically the path scattering effects
unique to each individual seismogram xk

j within the group Xj . It is denoted by pk for the kth seismogram,
highlighting its waveform-specific nature.

Fig. 2a illustrates the generative model assumed by SymAE, from which the following arguments are inferred. The
source information and the path scattering information for distinct seismograms are assumed to be independent within
the prior distribution. Consequently, the joint probability distribution of s, pk and pl is expressed as the product of their
marginal probability distributions

P (s,pk,pl) = P (s)P (pk)P (pl), (8)
for any two path codes of seismograms with indices k and l. In order to factor the likelihood P (xi | z), we assume the
independence of seismograms conditioned on the shared source information. For any two seismograms, indexed by k
and l, of an earthquake, this independence can be expressed as follows:

P (xk
j ,x

l
j | s,pk,pl) = P (xk

j | s,pk)P (xl
j | s,pl). (9)

Intuitively, this indicates that, upon knowing the shared source information, the wavefield at one receiver does not
inform the wavefield at another receiver. Consequently, for each source with index j, the likelihood can be ultimately
factored as:

P (Xj | z, ϕ) =
∏

k

P (xk
j | s,pk, ϕ). (10)

SymAE’s encoder generates the approximate posterior distribution Q(z | Xj , θ) of the latent variables given the input
seismograms of the earthquake. As discussed previously, this is crucial because the true posterior can be mathematically
intractable. Disentanglement in the latent space allows us to factorize this posterior distribution. To achieve factorization,
we assume conditional independence during inference of latent variables. This means that
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Figure 2: Generative models. (a) SymAE: this model assumes each waveform (denoted by xk) is generated from a
common coherent component (represented by s), along with waveform-specific nuisance components (represented
by pk) that account for variations between waveforms. (b) SymAE with time-shift transformer: this enhanced model
builds upon the regular SymAE by introducing a deterministic time-shift variable (denoted by τk). This variable allows
for additional flexibility in capturing coherent information from waveforms affected by temporal shifts.

• the path effects are inferred independently using their respective seismograms

Q(pk,pl | Xj , θ) = Q(pk | Xj , θ)Q(pl | Xj , θ) = Q(pk | xk
j , θ)Q(pl | xl

j , θ); (11)

• and when we consider a specific earthquake, the inference of source information s is independent from that of
the path information pk at any receiver

Q(s,pk | Xj , θ) = Q(s | Xj , θ)Q(pk | Xj , θ) = Q(s | Xj , θ)Q(pk | xk
j , θ). (12)

By consolidating these assumptions, for each earthquake j, the approximate posterior distribution is given by

Q(z | Xj , θ) = Q(s | Xj , θ)
∏

k

Q(pk | xk
j , θ). (13)

In the above equation, the term Q(s | Xj , θ) represents the coherent source information s inferred by the accumulation
of information across all seismograms, and Q(pk | xk

j , θ) is the path (nuisance) information derived from each
seismogram. Finally, by substituting xi with Xj in eq. 6, and by using the expressions for likelihood and posterior from
equations 10 and 13, we derive the ELBO for SymAE which is optimized during the training:

L(θ, ϕ) =
∑

j

∫
Q(z | Xj , θ) log [P (Xj | z, ϕ)] dz−

∑

j

DKL (Q(z | Xj , θ) ∥ P (z))

=
∑

j

∑

k

∫
Q(s | Xj , θ)Q(pk | xk

j , θ) log
[
P (xk

j | s,pk, ϕ)
]
dsdpk

−
∑

j

DKL (Q(s | Xj , θ) ∥ P (s))

−
∑

j

∑

k

DKL

(
Q(pk | xk

j , θ) ∥ P (pk)
)
. (14)

In the above equation, the first term represents the reconstruction loss. During training, a Monte Carlo estimate is used
for this term, and the next two terms are regularization terms.

3.1 Nuisance Encoder

The factored approximate posterior distribution Q(z | Xj , θ) in eq.13 allows us to employ separate encoder functions
for each of the decomposed terms. These separate encoders operate on the input data Xj to infer the individual latent
variables that represent the source component (s) and the path information components (pk) as depicted in Fig. 3. A
separate convolutional network, denoted by gp with parameters θp, is employed to capture the path parameters specific
to each seismogram. These parameters, denoted by pk for kth seismogram, account for variations or noise present in
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Figure 3: Disentangled representation learning for seismic waveforms using SymAE.

individual seismograms that are not part of the underlying coherent information. The network gp acts as a deterministic
transformation, taking the seismogram xk

j and its own parameters θp as input. The output of this transformation
defines the approximate posterior distribution Q(pk | xk

j , θp). This distribution represents the probability of the path
parameters pk given the specific seismogram xk

j and the network parameters θp:

Q(pk | xk
j , θp) = N (pk | gp[x

k
j , θp]) (15)

Again, N denotes a normal distribution with mean and diagonal variance determined by the network output gp[x
k
i , θp],

where we denote the mean of this distribution using mk
j for future use.

3.2 Coherent Encoder: Accumulation of Coherent Information

The concept of combining information from multiple sources is crucial in various scientific fields. In Tarantola
[2005] (example 1.12), an inverse problem is presented where independent measurements provide posterior probability
distributions for a parameter. The combination of these independent probability distributions is achieved by first
multiplying the individual distributions. Then, the resulting probability distribution is normalized to ensure that it sums
up to one, representing the combined knowledge about the parameter after considering all measurements. This process,
termed conjunction (denoted using ∧) of information states, leverages the independence of the measurements, thereby
accumulating the information provided by each distribution. It’s important to remember that the process of conjunction
used to combine the information from individual distributions is commutative (symmetry with respect to ordering).

Similarly, in SymAE, Q(s|Xj , θ) in eq. 13 represents the accumulated coherent information about the source parameter
s inferred from all seismograms in Xj . Each seismogram is considered an independent observation that is informative
about s. The concept of conjunction is then used to accumulate this information across all seismograms:

Q(s | Xj , θ) = Q(s | x1
j , θ) ∧Q(s | x2

j , θ) ∧ · · · ∝
∏

k

Q(s | xk
j , θ). (16)

We model each Q(s | xk
j , θ) as a Gaussian distribution with mean µk

j and variance Vk
j . These are determined by the

output of the network gs with parameters θs, which takes the input seismogram xk
j as input: Q(s | xk

j , θs) = N (s |
gs[x

k
j , θs]). Given that each individual posterior distribution Q(s | xk

j , θs) is Gaussian with mean µk
j and variance Vk

j ,
it can be shown (see Bouchacourt et al. [2018]) that the accumulated distribution is also Gaussian, with mean (µj) and
variance (Vj) are derived using the following equations:

V−1
j =

∑

k

(
Vk

j

)−1
, (17)

µT
jV

−1
j =

∑

k

(
µk

j

)T (
Vk

j

)−1
. (18)

These equations combine the information from all individual distributions, effectively accumulating the knowledge
about the source parameter s across all seismograms. A crucial aspect of these equations lies in using the inverse
(denoted by −1) of variance, which represents the precision. Precision indicates how informative a distribution is. A
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150-100 time relative to P arrival (s)

(a) Seismograms with coherent source information.

150-100 time relative to P arrival (s)

(b) Seismograms lacking coherent source information.

Figure 4: SymAE, applied here to the wavefield data from the 2013-05-24 Mw 8.3 Sea of Okhotsk earthquake, identifies
seismograms that are more informative about the source by analyzing their contribution to the accumulated coherent
information (see eq. 19). Notice that seismograms with a stronger contribution and lower influence from nuisance
variations are considered more informative.

lower variance (higher precision) signifies a tighter distribution with more concentrated information around the mean.
In contrast, a higher variance (lower precision) represents a broader and less informative distribution. The equations do
not directly sum the variances because variance reflects the spread of the distribution, not its informativeness. Instead,
they sum the inverses of the individual variances. This makes sense because precision tells us how much information
each seismogram contributes. By adding these precisions, we effectively accumulate the total informative content from
all observations. The second equation follows a similar logic for the mean. It calculates the product of the mean vector
transposed µT

j with the inverse of the corresponding variance V−1
j . This essentially weights the contribution of each

mean based on the precision of its corresponding distribution. The sum of all seismograms then combines this weighted
information. Seismograms with higher precision (more informative) have a greater influence on the final accumulated
mean µj . This formulation allows the network to implicitly down-weight waveform features with high noise (high
variance, low precision). These noisy features have a weaker influence on the accumulated mean µj . This mechanism
generalizes non-linear stacking approaches where noisy samples receive lower weights. In this framework, the network
effectively learns to discriminate between noisy samples and waveforms with good Signal-to-Noise Ratio (SNR), where
signal refers to coherent information, alleviating the need for manual pre-processing steps.

3.3 Identifying Informative Seismograms

Our approach utilizes Q(s | xk
j ) to represent the knowledge about the coherent information obtained solely from the

k-th sesimogram. In contrast, Q(s | Xj) captures the accumulated coherent information derived from all seismograms
of the earthquake. After training SymAE, we can identify which specific seismograms contribute most significantly
to the accumulated source information. This is accomplished by calculating the Kullback-Leibler (KL) divergence
between Q(s | Xj), which represents the accumulated distribution, and Q(s | xk

j ), the distribution for an individual
seismogram xk

j :
H[xk

j ] = DKL

(
Q(s | Xj) ∥ Q(s | xk

j )
)
. (19)

Since KL divergence measures the distance between two distributions, seismograms that contribute more significantly
to the accumulated information will have lower H values. In simpler terms, waveforms with lower H values are less
affected by irrelevant path or nuisance variations and hence contribute more to the overall understanding represented by
Q(s | Xj). For instance, Fig. 4a displays seismograms that provide valuable source information of a deep earthquake,
whereas Fig. 4b shows seismograms that lack earthquake source content; it is evident that the uninformative seismograms

8



Variational Symmetric Autoencoders A PREPRINT

0 20 40 60 80 100
150

200

250

300

k

H
[?
]

a)

? = xk
okt1

? = yokt1[m
k
okt5]

0 20 40 60 80 100
150

200

250

300

k

H
[?
]

b)

? = xk
spain

? = yspain[mk
fiji4]

Figure 5: In the framework of source imaging, seismograms that exhibit higher H values (refer to eq. 19) are considered
informative. a) Virtual seismograms of the Sea of Okhotsk earthquake (Mw 8.3, referred to as okt1) in blue, generated
using the path effects of another Sea of Okhotsk earthquake (Mw 6.7, referred to as okt2), are found to be less informative
than the actual recorded seismograms (black). This is because okt1 and okt2 have different source mechanisms; okt2
involves a single rupture, while okt1 consists of three distinct ruptures. b) Similar to (a) but displaying the H values for
measured and virtual seismograms of the Spain earthquake (Mw 6.3, labeled spain). In this case, both the measured and
virtual seismograms (using path effects from a Mw 6.8 earthquake of Fiji region) show comparable H values, indicating
they are equally informative. This similarity suggests that both earthquakes share characteristics.

exhibit noise, meaning they are influenced by irrelevant variations. We achieved these results by training the SymAE on
a collection of high-magnitude earthquake P-wave teleseismic displacement waveforms of earthquakes listed in Tab. 1.
The specific details of this dataset and training process are presented later in the results section.

3.4 Redatuming and Conditonal Generation of Virtual Seismograms

A key advantage of the latent space disentanglement achieved in SymAE is the ability to perform conditional generation
of seismograms. In conditional generation, we can control the generation process by fixing the latent variables associated
with the source information. By doing so, we can generate a collection of virtual seismograms (ensemble) that share the
same underlying source characteristics while varying in their path effects. We denote virtual or synthesized seismograms
yj [m

k
i ], which is the mean of the Gaussian distribution, generated by the decoder f of the trained SymAE model, given

by f [µj ,m
k
i , ϕ]. Here, µj represents the mean source information for the jth earthquake, obtained using the coherent

encoder gs that yields Q(s | Xj) using seismograms Xj . The mean path information from xk
i , the kth seismogram of

the ith earthquake, is denoted using mk
i . It is derived from the encoder gp which produces Q(pk | xk

j ) using xk
j . In

seismic data processing, a key technique called redatuming aims to virtually reposition recorded seismic wavefields
to a different reference level (datum). This is often done to simplify the interpretation of features within the Earth’s
subsurface. In the context of SymAE, we can leverage the disentangled representation to perform a specific type of
redatuming: swapping the path information between different seismograms to synthesize virtual seismograms.

Virtual seismograms yj generated by combining the source information of the jth earthquake with the path information
of a different earthquake can provide insight into the role of path effects that obscure the interesting source information.
For example, a clear seismogram (less affected by path effects and other noises) obtained from one earthquake could
assist in producing a clear seismogram for another earthquake, potentially of smaller magnitude. However, it is crucial
to assess their overall informativeness. To evaluate the informativeness of a virtual seismogram, we use the eq. 19
metric based on the KL divergence:

H[yj [m
k
i ]] = DKL

(
Q(s | Xj) ∥ Q(s | yj [m

k
i ])
)
. (20)

Here, Q(s | yj [m
k
i ]) represents the source information in the virtual seismogram, H[yj [m

k
i ]] quantifies the information

loss when replacing the group of real seismograms Xj with the single virtual seismogram yj [m
k
i ] in terms of the

source information. A lower KL divergence indicates a better preservation of source information in the virtual
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Figure 6: Heatmap illustrating the average information loss when generating virtual seismograms by combining source
information from y-axis earthquakes with path information from x-axis earthquakes. Lighter colors indicate lower
information loss, suggesting greater similarity between the source characteristics of the respective earthquakes.

seismogram. We observed a correlation between the informativeness of generated virtual seismograms and the similarity
of source earthquakes. Redatuming between similar earthquakes generally results in lower information loss compared to
redatuming between dissimilar events. This suggests that earthquakes with significantly different rupture complexities,
such as those with varying numbers or characteristics of seismic subevents, may exhibit greater information loss when
their path effects are swapped. Fig. 5 illustrates this phenomenon using two deep earthquakes as examples. Here,
virtual seismograms generated by swapping path effects between two earthquakes even within the same tectonic setting
(e.g., the Sea of Okhotsk), as in Fig. 5a, exhibited higher information loss. In the case of Fig. 5b with spain and fiji4
earthquakes in Tab. 1, the information loss was minimal, suggesting a resemblance between earthquakes, even if they
originated from distinct tectonic settings.

To assess information loss across multiple earthquake pairs, we averaged the KL divergence H[yj [m
k
i ]] over all

seismograms for each pair and visualized the results in a heatmap Fig. 6, where higher values after normalization
indicate greater similarity between the source characteristics of the respective earthquakes. For instance, earthquakes
fiji1 and fiji2, known for their complex rupture processes with multiple subevents [Jia et al., 2020], exhibited higher
information loss when paired with other deep earthquakes in Tab. 1. In contrast, the earthquakes in Spain and Fiji4
showed a lower loss of information, suggesting potential similarities in their source characteristics. Similarly, our
analysis revealed similarities between earthquakes okt1 and bon1, while demonstrating a clear dissimilarity between
bon1 and spain. We will further validate these observations by analyzing the extracted coherent source information in
the results section.

3.5 Optimal Virtual Seismograms

We have shown that SymAE not only has the ability to generate virtual seismograms, but it can also effectively identify
informative seismograms (eqs. 19 and 20). Taking advantage of this dual functionality, we aim to generate virtual
seismograms that are enriched with task-relevant source information while simultaneously minimizing the influence
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Figure 7: Architecture of the SymAE with time-shift transformer. The model incorporates a localization network
to estimate optimal time shifts for input waveforms, followed by the core SymAE components for latent-space
representation and reconstruction. An inverse time-shift operation is applied to the reconstructed waveforms to align
them with the original waveforms.

of path factors. Essentially, we used a trained SymAE model to create a virtual seismogram that best represents the
underlying source characteristics, effectively filtering out noise and irrelevant information that may be present in
real-world data. The generation of this virtual seismogram translates into an optimization problem, where we search the
space of possible nuisance codes (denoted by m) to achieve this goal. This optimization problem can be formulated as
follows:

mj = argmin
m

DKL (Q (s | Xj) ∥ Q(s | yj [m])) + α∥yj [m]∥1,

subject to
D∑

n=1

(yj [m])n = 0 and
1

D

D∑

n=1

(
(yj [m])n − 1

D

∑

n

(yj [m])n

)2

= 1. (21)

The solution we seek is the optimal nuisance code, denoted by m, corresponding to the jth earthquake. By manipulating
this code within the optimization framework, we influence the characteristics of the generated virtual seismogram
yj [m], which is the mean of decoder output f [µj ,m]. A key term in the objective function is the KL divergence,
denoted by DKL (Q(s | Xj) ∥ Q(s | yj [m])). This term measures the difference between the information about the
coherent source (represented by s) extracted from all measured seismograms of the earthquake Q(s | Xj) and the
information obtained from the generated virtual seismogram Q(s | yj [m]). Minimizing this divergence ensures that the
virtual seismogram retains the coherent information of the earthquake. Another crucial term promotes sparsity in the
virtual seismogram. This term involves the ℓ1-norm of the predicted virtual seismogram. A higher ℓ1-norm penalty
encourages a virtual seismogram with fewer non-zero values, potentially leading to a simpler representation with less
influence from nuisance variations. The parameter α controls the weight given to this sparsity term, allowing us to
adjust the trade-off between minimizing KL divergence and achieving a sparse virtual seismogram. Other relevant
constraints, denoted by “subject to” in the formulation, include enforcing a zero mean for the virtual seismogram.
This translates to requiring the sum of all elements in the D-dimensional vector y = (y1, . . . , yD)T to equal zero.
The second constraint ensures unit variance for the virtual seismogram. These constraints align the generated virtual
seismogram with real seismograms, which exhibit zero mean and unit variance characteristics after preprocessing. In
the results section, we show that generating a virtual seismogram for each earthquake effectively preserves important
source information while reducing the impact of noise and other irrelevant variations.

4 Symmetric Autoencoder with Time-shift Transformer

Seismograms often exhibit variations in arrival times due to factors such as propagation path differences. This can
hinder the effective application of the SymAE architecture discussed in the previous section, which has difficulty
compressing time-shifted waveforms into a low-dimensional latent space. To address this challenge, we introduce a
timeshift transformer module that aligns waveforms before encoding. We show that by learning optimal time shifts, the
model effectively extracts underlying coherent information and generates accurate reconstructions.

The architecture of SymAE with time-shift transformer is illustrated in Fig. 7, while its corresponding generative model
is shown in Fig. 2b, where time shifts are treated as deterministic variables. To account for potential time shifts in input
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Figure 8: ELBO and KL divergence DKL (Q ∥ P ) during SymAE training with and without time-shift transformer
using noiseless seismograms (Figs. 1e and 1f). The time-shift transformer SymAE model exhibits lower reconstruction
loss (mse).

waveforms, we introduce the notation Wj = {wk
j } to represent time-shifted seismograms. A localization network l

with parameters ν initially processes these waveforms to determine optimal time shifts τkj = l[wk
j , ν], which are then

applied to generate time-aligned versions Xj = {xk
j } = {T[wk

j , τ
k
j ]}. Here, T denotes the time-shift operation, which

we implement in the frequency domain using the Fourier-shift property. The core SymAE model subsequently operates
on these aligned waveforms to learn a disentangled latent space representation. The loss function, adapted from the
standard VAE formulation in Eq. 6, incorporates a reconstruction term, a KL divergence regularizer, and a time-shift
regularization term:

L(θ, ϕ, ν) =
∑

j

∫
Q(z | Wj , θ) log [P (Wj | z, ϕ)] dz−

∑

j

DKL (Q(z | Wj , θ) ∥ P (z))

+γ
∑

j

∑

k

(τkj )
2, where τkj = l[wk

j , ν] and xk
j = T[wk

j , τ
k
j ] (22)

An inverse time-shift operation using −τkj is applied to the decoder-produced waveforms f . The mean of the likelihood
P (Wj | z, ϕ) results from this inverse time-shift operation on the decoder output f [z, ϕ]. Where as, the posterior
Q(z | Wj , θ) is obtained by applying the encoder after time-shifting each input waveform using the corresponding τkj .
The time-shift regularization term penalizes excessive time shifts, ensuring stability and interpretability of the model.
The loss function is minimized through backpropagation to optimize the model parameters ϕ, θ and ν.

5 Results

To evaluate the proposed SymAE model, synthetic seismograms incorporating noise and time shifts were generated
(Fig. 1). The SymAE model was trained using the ADAM optimizer [Kingma and Ba, 2014]. Fig. 8 illustrates the
ELBO loss during training for standard and time-shift transformer SymAE models using noiseless data. The latter
exhibited lower reconstruction loss, and the extracted coherent source information (Figs. 9a and 9c) closely matched the
ground-truth source signatures in both cases. However, in the presence of noise, the standard SymAE model performed
poorly, as evidenced by the ELBO plot in Fig. 10. In contrast, the time-shift transformer SymAE demonstrated superior
performance, effectively extracting coherent source information, as plotted in Fig. 9d.

Fig. 11 illustrates the effectiveness of the proposed SymAE method in extracting coherent source information of deep
earthquakes (Tab. 1) compared to traditional deconvolution techniques [Vallée et al., 2011]. Here, SymAE is trained
on roughly 5000 displacement seismograms (all components) for each earthquake. The SymAE-derived source time
function exhibits a clearer and more detailed representation of the earthquake rupture process, capturing complex
features due to multiple events that are often obscured and smoothed out in traditional deconvolution approaches. This
improvement is particularly evident in the case of earthquakes like bon1, fiji4, and spain. The half-durations of the
source functions extracted using SymAE closely align with those determined from the raw seismograms. Importantly,
the extracted source-function similarities align closely with the relationships previously observed in the information
loss heatmap in Fig. 6. This further validates the effectiveness of our proposed optimization approach in extracting the
underlying characteristics of the earthquakes.
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Figure 9: SymAE extracted coherent source information through latent space optimization for the synthetic experiment.
True sources I and II are plotted in Fig. 1a and Fig. 1b, respectively.
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Figure 11: Comparison of coherent source information extracted using SymAE (blue) for complex deep earthquakes
compared to traditional deconvolution techniques (gray).

6 Conclusions

This study introduces a novel approach to extracting coherent information from seismic wavefields using a Symmetric
Autoencoder (SymAE) with a time-shift transformer. By disentangling the latent space into source and path components,
the proposed method effectively isolates coherent seismic signals, reducing the impact of noise and other unwanted
variations. The ability to quantify waveform informativeness is a key contribution, enabling the identification of data
that significantly contributes to the overall coherent signal. Our experiments demonstrate the effectiveness of SymAE in
extracting coherent source information, particularly in the presence of noise and complex seismic phenomena. The
generated virtual seismograms provide valuable insights into the underlying earthquake processes. The proposed
framework holds promise for a wide range of seismological applications that require the extraction of coherent signals
from noisy data.

Future research could explore the application of SymAE to other seismic datasets, such as ambient noise tomography.
Additionally, incorporating more complex physical models into the SymAE framework could lead to further improve-
ments in the extraction of coherent information. We emphasize the importance of evaluating generative models, such
as SymAE, within the context of their intended applications. We argue that a model’s performance should be judged
on the basis of its ability to produce data that are physical and valuable for specific seismological tasks, as generic
metrics may not capture the nuances required for these applications. Theis et al. [2016] recommended to use evaluation
strategies that are tailored to the specific applications of generative models.
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