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ABSTRACT

Detecting deep voids in urban subsurfaces remains a challenging problem for geophysical methods,
particularly with conventional active seismic sources that lack the low-frequency energy necessary
for greater depth penetration. To address this, we explored an alternative approach using seismic
noise generated by the engine of an idle vehicle to supply the needed low frequencies and enhance the
detection capabilities for voids at depths beyond 8m. A key obstacle in processing this seismic noise
is the presence of cross-correlation residuals, which occur when traditional linear stacking methods
struggle to achieve stable averages, particularly with shorter-than-usual time duration data. These
residuals interfere with the identification of void signatures, such as backscatters and ringing patterns,
undermining the accuracy of void detection in dynamic urban settings. To tackle this issue, we employ
symmetric autoencoders (SymAE), an unsupervised machine learning architecture, applied to vehicle
seismic noise. By training neural networks to disentangle coherent subsurface information from
source-induced noise, SymAE effectively minimizes cross-correlation residuals and enhances the
extraction of backscatters and ringing patterns. By applying this technique in a semi-controlled field
experiment, we successfully detected two known voids at approximately 10m depth. SymAE reduces
data requirements while improving detection accuracy, showing potential for rapid, cost-effective,
and reliable subsurface void detection in urban environments.

1 Introduction

The field of near-surface geophysics has rapidly evolved, focusing on the detailed imaging of the shallow subsurface,
typically spanning from a few meters to depths of hundreds of meters. While it shares foundational physical principles
with deeper subsurface investigations, its unique proximity to the Earth’s surface and the considerable heterogeneity
encountered therein set near-surface geophysics apart as a distinct field, addressing environmental and engineering
challenges.

Near-surface geophysics addresses environmental challenges such as accurate groundwater monitoring in densely
populated urban areas (Steeples, 2005; Binley et al., 2015; Clements and Denolle, 2018). It is a crucial tool in mitigating
water scarcity and detecting risks such as sinkholes and covert tunnels, which threaten public safety and national
security (Gutiérrez et al., 2014; Sloan et al., 2015; Youssef et al., 2020). Engineering near-surface geophysics is vital in
monitoring existing structures during underground construction, identifying risks, and mitigating issues arising from
construction-induced vibrations, essential for urban expansion. Most urban geophysical imaging challenges related to
near-surface areas involve investigating changes in geophysical properties both spatially and temporally (Fang et al.,
2020).

This paper focuses on detecting clandestine voids as a spatial variation problem, akin to anomaly detection, wherein we
hypothesize lateral homogeneity within the subsurface medium, with the exception of the presence of voids. Existing
seismic methods for detecting such voids include reflection, refraction, diffraction, and surface waves (Branham and
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Steeples, 1988; Dobecki, 1988; Belfer et al., 1998; Landa and Keydar, 1998; Sloan et al., 2013; Schwenk et al., 2014,
2016; Peterie and Miller, 2015). Among these, surface-wave methods, such as multichannel analysis of surface waves
(MASW) (Park et al., 1999) and surface-wave backscattering (Schwenk et al., 2016; Ivanov et al., 2017), are preferred
for detecting near-surface anomalies, as surface waves attenuate more slowly than body waves. In addition, various
studies have focused on identifying resonant ringing patterns emerging from these high-contrast subsurface voids
(Korneev, 2009; Rubin et al., 2014; Schneider et al., 2017; Sloan and Feigenbaum, 2020, 2024). However, observing
these phenomena necessitates a seismic source capable of generating adequate energy to reach the void. Many active
sources, such as sledgehammers, are bandlimited and lack low-frequency energies (Mi and Xia, 2021). As a result,
active MASW surveys using a hammer source fail to produce reliable images of the void. For instance, we included the
outcomes of an MASW survey in Appendix A that did not succeed in identifying a known void. In contrast, passive
seismic survey studies show promise in retrieving low-frequency surface waves from ambient urban noise (Park et al.,
2005; Cheng et al., 2015; Morton et al., 2021). Unlike active seismic methods, passive and semi-passive techniques
can utilize readily available urban sources, such as controlled vehicle sources, which generate lower frequencies than
typical active sources (Hanafy et al., 2015; Li and Hanafy, 2016). However, semi-passive imaging, where the source
location is fixed, faces challenges in source repeatability, hindering accurate interpretation essential for time-lapse
monitoring (Romero Jr et al., 1997; Lumley, 2001; Gunasekera et al., 2003; Gouedard et al., 2008). In this study, we
concentrate on a relatively simpler semi-passive approach, utilizing an idle vehicle with its engine turned on as a seismic
source, characterized by uncontrollable signatures but a controlled position. Given our emphasis on an idle vehicle as a
seismic source, it is vital to address the challenges associated with source repeatability. Successfully addressing these
obstacles will open the door for cost-effective subsurface imaging using urban seismic noise in future projects.

Given the similarities in challenges between semi-passive and passive settings, we build our approach on the method of
cross-correlation, commonly used in passive subsurface imaging. Several authors (Weaver and Lobkis, 2001; Campillo
and Paul, 2003; Wapenaar, 2004; Snieder, 2004; Weaver, 2005) have demonstrated that the cross-correlation of a
random field converges to the Green function, which represents the medium’s response at one point when subjected to
an impulsive source at another point. A critical aspect of passive seismic imaging is stacking cross-correlated data to
enhance the signal-to-noise ratio (S/N).

The conventional stacking method (Mayne, 1962), which computes the arithmetic mean of data over time windows, typi-
cally requires random sources and long-duration data for convergence. In the context of urban-noise imaging, collecting
data over extended periods is unfeasible; hence, there is a need to design effective stacking methodologies (Zhang
et al., 2020). Several researchers (Larose et al., 2004; Snieder, 2004; Sabra et al., 2005; Weaver and Lobkis, 2005;
Zhang et al., 2021) have explored the issues encountered in urban seismic imaging when employing linear stacking
techniques with shorter time-duration data than usual. Linear stacking with shorter time-duration data leads to residual
cross-correlation fluctuations, which hinder convergence to stable long-term averages (De Ridder et al., 2014). In other
words, these cross-correlation residuals can obscure crucial surface-wave information (Cheng et al., 2019; Zhang et al.,
2020) when processing passive traffic noise (Louie, 2001; Park et al., 2004; Behm et al., 2014) in shorter time intervals.

Nonlinear stacking methods (Schimmel et al., 2011; Rückemann, 2012; Olivier et al., 2015; Xie et al., 2020) improve
the coherence of the seismic signal by using nonlinear weighting operations, such as phase weighting, muted weighting,
and optimal weighting, to weigh time windows based on signal consistency across the traces, thus enhancing the
S/N. Our approach generalizes nonlinear stacking by weighing the time windows with the learned parameters of the
neural networks. In other words, we train neural networks to extract coherency from seismic data. Compared to most
contemporary deep-learning approaches, the training is unsupervised, where the architectural design of the symmetric
autoencoder (SymAE) (Bharadwaj et al., 2020, 2022, 2024) allows for disentanglement of the subsurface-scattering
effects from vehicle noise. Specifically, we learn a useful representation of cross-correlated seismic noise, where
the features associated with Green’s function are separated from the remaining nuisances due to source variability.
Compared to conventional stacking, we validated the efficiency of SymAE by locating known voids 8− 12m deep
after extracting the associated low-frequency backscattered surface waves and ringing effects. The emphasis lies on
detecting the voids through these associated backscattered and ringing signatures to develop a robust void detection
system. In summary, our focus is on the detection of voids, with an aim to address two key challenges: 1. the lack
of low-frequency energy in active sources like sledgehammers, and 2. the convergence issues faced by conventional
stacking methods when processing shorter intervals of vehicle noise data in urban environments. The field experimental
setup, using an idle vehicle with its engine turned on as a seismic source, is detailed in the following section.

2 Experimental setup

We conducted geophysical surveys using a roll-along setup with 24-channel vertical-component geophones with a
natural frequency of 4.5Hz connected by leapfrog cables. The surveys were carried out at sites with known voids and
our primary objective was to detect voids located approximately at x = 100m along the survey line at site 1 and at
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x = 126m along the survey line at site 2. The voids are air filled and have diameters approximately between 1.5− 2m.
These sites primarily consist of silt clay with minimal gravel, transitioning to moderately dense clayey silt at varying
depths. The S-wave velocity (Vs) for these locations is approximately 300− 330m/s, as determined through multiple
MASW surveys. The positions of the survey line were marked by x and the geophones were separated by a distance
of 2m. The source offset, i.e., the distance between the vehicle source and the first geophone, was set at 6m. As we
moved the vehicle along the survey line, we recorded 5-minute noise record generated by the vehicle at each position of
the source. At each location, the vehicle was idle with its engine on with a total spread length of 46m. We covered a
total distance of 148m during each survey. The spectrum of the vehicle source, shown in Figure 1a, indicates the ability
of the vehicle to generate low frequencies (in the range of 2− 15Hz) compared to a hammer. The survey, illustrated in
Figure 2, involved the movement of a vehicle along the survey line, with each roll-along covering a distance of 6m.
Aside from the void, it is likely that the subsurface exhibits lateral homogeneity at both locations.

For noise preprocessing, we employed several steps. Firstly, we windowed the noise into 2 s time windows with 50% of
overlap. Subsequently, we whitened the noise using the average spectrum of the vehicle and applied a low-pass filter
with a cutoff frequency of 20 Hz. This filtering aimed to isolate lower frequencies that were conducive to detecting
deeper voids within the subsurface. We conducted two data-processing scenarios: analyzing the entire 5-minute
recording and analyzing the last 2.5-minute segment. The choice of the 2.5-minute segment is arbitrary, and any
2.5-minute segment can be chosen.

This experimental setup, accompanied by the specified data preprocessing scenarios, provided the framework for our
subsequent analyses aimed at isolating and characterizing the void signatures discussed in the next section.

3 Theory

We begin by exploring the principles of cross-correlation and understanding the challenge of cross-correlation residuals
in linear stacking. Subsequently, we investigate the void signatures in the seismic wavefield: 1. backscattered
correlations, focusing on how surface-wave interactions can reveal hidden subsurface features, and 2. the ringing effect,
where trapped seismic energy within voids produces distinctive resonances. In traditional processing, we observed that
these void signatures are often obscured by cross-correlation residuals.

3.1 Cross-correlation and linear stacking

Cross-correlated noise gathers (CCNs) are generated by calculating the cross-correlation of overlapping time windows
between pairs of receivers. For this purpose, preprocessed 2 s overlapping time windows are used to create the cross-
correlation of noise signals recorded at different receiver locations. The equation for cross-correlation between two
receivers r and r + δx is given as:

gk
r,s(δx, τ) =

∫

t

dk(r, s, t)dk(r + δx, s, t+ τ)dt, (1)

where dk(r, s, t) represents the noise recorded at the receiver location r due to the vehicle at the source location s along
the survey line, with the signature of the vehicle specific to the time window denoted by superscript k. δx represents
the inter-receiver distance and τ is the cross-correlation time lag. Each CCN corresponds to a set of cross-correlations
computed between a reference receiver and neighboring receivers over a range of time lags. For each reference receiver
r, the gathers are computed by cross-correlating the signal at receiver r with signals at adjacent receivers r + δx, where
δx varies over the specified range depending upon the signatures of interest. The green rectangles in Figure 2 refer to
the spread of gathers for the reference receiver positions to be considered while discussing the results. For deep learning
models to function effectively, they require normalized data during training. Specifically, in this scenario, each CCN is
normalized so that gkr,s(0, 0) = 1.

Traditionally, all the CCNs are stacked linearly across time windows to extract the medium’s response (i.e., subsurface
information). The extraction of void signatures is critically dependent on the time windows utilized for stacking.
Therefore, we implement two stacking procedures to extract backscattered correlations and ringing effects:

• Backscattering experiment: We stack CCNs over time windows corresponding to multiple source locations
that contribute to a specific reference receiver during the roll-along survey. This procedure leverages the
independence of the phase terms in the scattered wavefield, as recorded at the reference receiver, from the
varying source locations. In this experiment, the range of δx varies from −12m to 12m.
We consider only the CCNs generated from the source locations where the CCNs for the specified range of
δx can be reliably computed. In essence, using the reference receiver location and the δx range, these source
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Figure 1: (a): Normalized raw logarithmic amplitude spectra for both vehicle (2 s time window) and hammer sources,
demonstrating that the vehicle source is capable of generating lower frequencies in comparison to the hammer source.
(b): Seismic trace corresponding to a 2 s time window for the vehicle source.

locations can be determined by examining the Seg-Y file indices along the y-axis in Figure 2. For example,
in this experiment, the CCNs associated with the reference receiver at r = 100m, at site 1, are derived from
the source locations associated with Seg-Y file indices 2080 through 2083, representing sources positioned at
x = {118, 124, 130, 136}m. Thus, the linear stacking formula for the backscattering experiment is expressed
as:

ḡr,s(δx, τ) =
∑

k,s

gk
r,s(δx, τ), (2)

where ḡr,s(δx, τ) represents the stacked CCN.
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Figure 2: A schematic illustration of a roll-along survey conducted to detect subsurface voids. Variability in the source
signature with changes in source position is represented using different colors. The dash-dotted line indicates the void’s
location at 100m for site 1. The reference receiver location is indicated by r. Green boxes represent the spread of
gathers corresponding to the reference receiver positions considered (subsequently denoted by δx).

• Ringing experiment: Unlike backscattering, the resultant ringing pattern might be influenced by the position
of the source (Sloan and Feigenbaum, 2024). Therefore, we focus on stacking time windows corresponding to
a particular source location, sr, closest to the reference receiver r. For example, at site 1, the CCNs associated
with the reference receiver at r = 100m, are derived from the source location associated with the Seg-Y file
numbered 2077 representing the closest source located at x = 106m. Thus, for the ringing experiment, the
stacking approach is expressed as:

ḡr,sr (δx, τ) =
∑

k

gk
r,sr (δx, τ). (3)

In the ringing experiment, δx varied from −20m to 0m.
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ḡ48,s − ḡ44,s
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Figure 3: Cross-correlation residuals between two nearby receivers, r = 44m and r = 48m. Ideally, the difference
should be zero in the absence of residuals. However, due to the unstable stacking average for a shorter processing
interval, the difference is significantly high. On the CCNs, the green dashed lines illustrate the location of the reference
receiver and the zero lag.

A comprehensive discussion on the choice of δx for both these experiments is provided in Appendix B.

As mentioned earlier, the conventional stacking approach requires long-duration data, typically 20−150minutes (Hanafy
et al., 2015; Li and Hanafy, 2016; Wang et al., 2023), for a stable convergence. For instance, in the backscattering
experiment, we initially anticipated that the stacked cross-correlated data for two closely spaced receiver positions,
specifically r = 44m and r = 48m, would yield similar results. Since these positions are within a relatively
homogeneous medium, as shown in Figure 2, we expected the difference between the two data to be nearly zero.
However, due to the insufficient time windows available for analysis, the stacked cross-correlated data for these two
receivers did not converge to similar stable averages. Consequently, the observed difference between them remained
higher than anticipated, as depicted in Figure 3. A similar issue was encountered during the data processing of the
ringing experiment. This underscores the need to eliminate these cross-correlation residuals to effectively extract the
desired void signatures (i.e., backscattered correlations and ringing patterns), which are discussed in the following
subsections.

3.2 Backscattered correlations as void signatures

We consider a scenario where the noise is predominantly composed of surface waves and their backscatter, thus:

dk(r, s, t) = dk←(r, s, t) + dk→(r, s, t), (4)
and

dk(r + δx, s, t+ τ) = dk←(r + δx, s, t+ τ) + dk→(r + δx, s, t+ τ). (5)

Here, dk→ signifies backscattered surface waves (caused by the void) travelling in the direction of increasing x, while
dk← represents direct surface waves moving in the opposite direction, i.e., decreasing x. By incorporating Equations 4
and 5 into Equation 1, the resulting cross-correlated noise is a superposition of four terms:

gk
r,s = ←,←

gk
r,s +←,→

gk
r,s +→,←

gk
r,s +→,→

gk
r,s, (6)
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where the cross-correlation between the direct surface waves, ←,←
gk
r,s, measured at two receivers (i.e., receivers at

r and r + δx) is the strongest, followed by cross-terms like ←,→
gk
r,s and →,←

gk
r,s. The objective is to isolate these

cross-terms, which signify backscatter correlations, to facilitate void detection.

The presence of cross-correlation residuals complicates the extraction of these cross-terms in linearly stacked data.
This issue was evident in our experiment, for ḡ100,s illustrated in Figures 4b and 4e, where the receivers capture both
direct and backscattered surface waves. Although we expect to observe weaker backscatter correlations, the stronger
cross-correlation residuals obscure these weaker backscatter correlations, as will be discussed in the results section.

3.3 Ringing effects as void signatures

The ringing effects arise from the confinement of seismic or acoustic energy due to disparities in medium properties. As
demonstrated by Rubin et al. (2014), in unbounded voids (e.g., cavities, caves), this energy manifests itself as standing
acoustic normal modes, while in bounded voids (e.g., boxes, barrels, tubes), it is characterized by flexural vibrations of
the boundaries. This trapped energy is subsequently released through resonant emission with the emitted frequencies
contingent upon the geometrical and physical attributes of the voids. In the time domain, the ringing effect is observed
as a long wave train (Rubin et al., 2014), referred to in this paper as the ringing pattern. Analytically, assuming a
spherical void, the resonant frequencies (fm,n) for unbounded voids, given by Schneider et al. (2017), are expressed as:

fm,n =
j
′

m,n Vp

πd
(7)

where the j
′

n,m is the mth root of the derivative of the nth spherical Bessel function, Vp is the P-wave velocity of the void
and d is the diameter of the void. Korneev (2009), through the synthetic experiments, suggested that circumferential
waves propagating around the boundary of a barrel are responsible for ringing. Figure 5 illustrates a simulation
demonstrating the release of trapped seismic energy from a 10m deep air-filled void, located at x = 126m, within an
elastic homogeneous medium, where the void’s P-wave velocity Vp is modeled as 340m/s, and the S-wave velocity Vs

is set to 0.5% of the medium’s S-wave velocity. Sloan and Feigenbaum (2024) presented several field examples showing
resonances related to voids. However, while the mechanisms or characteristics of the resonant wave propagation
phenomena remain unclear, previous studies suggest that: 1. the source should be in proximity to the void for ringing
to occur, 2. the ringing pattern is weaker in amplitude, 3. the ringing pattern is a continuous long wave train which
can be analyzed once the direct wave has passed, and 4. a void can exhibit a range of resonant frequencies. However,
higher frequencies are expected to experience significant attenuation, leading to negligible ringing effects. In contrast,
attenuation is less pronounced for low frequencies, making the ringing effect observable primarily in low-frequency
seismic noise.

Weaker resonant emissions tend to be comparable to cross-correlation residuals, leading to confusion in interpreting the
ringing pattern. This ambiguity was observed at site 2, where the void was located at x = 126m along the survey line.
Three reference receivers were considered to explain the ambiguity: r = 60m, r = 104m and r = 120m.

It was anticipated that only the reference receiver at r = 120m, being closest to the void when the source was above it,
would exhibit a distinct ringing pattern as shown in Figures 6i and 6l for both the 2.5-minute and 5-minute scenarios.
For r = 104m, in ḡ104,sr , however, a similar ringing pattern was observed in the 2.5-minute scenario, but this pattern
altered in the 5-minute scenario (Figures 6h and 6k). This alteration can be attributed to the decrease in cross-correlation
residuals, suggesting that these residuals may be misinterpreted as the ringing pattern. Similar alteration in ringing
pattern was visible for r = 60m in Figures 6g and 6j. It is important to note that we have analyzed the ringing pattern
for higher positive time lags leaving earlier lags, as ringing should be seen as a continuous long-wave train. Ultimately,
similar to the backscattering experiment, this underscores the need to eliminate cross-correlation residuals to prevent
misinterpretation. Following the identification of challenges of cross-correlation residuals and the critical need to
mitigate them for the effective extraction of backscatter correlations and ringing effects, the subsequent section explores
our approach to addressing these challenges and enhancing void detection capabilities.

4 Methodology

Our research leverages the capabilities of neural networks to extract coherency from seismic data. Neural networks
can be trained in an unsupervised manner to learn nonlinear transformations that reveal the underlying structures
inherent in the data. This process, termed representation learning, is essential for acquiring meaningful representations
that enhance our understanding of the phenomena of interest, particularly in complex data sets. Autoencoders are a
well-established technique in representation learning; however, conventional autoencoders often encounter difficulties in
extracting coherent features, predominantly owing to their deficiency in physical interpretability. Therefore, we utilize
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Figure 4: Backscatter correlations as a void signature: Panels (a) to (c) show differential analysis of stacked cross-
correlated noise for 2.5-minute and panels (d) to (f) for 5-minute scenarios, both with significant cross-correlation
residuals. Here, r = 44m is the baseline reference receiver. DVCCs, from Equation 21, show pronounced backscatter
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Figure 5: Seismic wavefield snapshots: Panels (a)–(l) display temporal snapshots of seismic wavefields in a homoge-
neous medium and a medium containing a void, along with the difference between these wavefields. This synthetic
simulation demonstrates the progressive release of trapped seismic energy as resonant emissions, with attenuation
effects excluded from the model. Panels (m)–(o) show the raw shot gathers for the respective wavefields and their
differences. The ringing effect manifests itself as a long wave train.

an innovative neural network architecture known as symmetric autoencoders (SymAE) (Bharadwaj et al., 2020, 2022,
2024). SymAE enables the resynthesis of seismic data, a process referred to as redatuming, which entails encoding and
altering the latent representation prior to decoding to generate virtual data. Unlike traditional autoencoders, SymAE
facilitates a physically meaningful redatuming of seismic data–considering both source and subsurface effects–due to
its disentangled latent representation, wherein coherent information (related to the subsurface) in seismic waveforms
is separated from other nuisance effects (related to the source signature). The method of SymAE introduced in this
paper marks a notable advancement from earlier versions. This is the first application of SymAE for training with
cross-correlated noise data. This novel approach can be regarded as a generalization of nonlinear stacking techniques,
where neural networks replace the ad-hoc nonlinear weighting schemes used in stacking methods.
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Figure 6: Ringing patterns: Stacked CCNs for the 2.5-minute and 5-minute durations in both synthetic and field
ringing experiments. Only positive time lags are shown to emphasize that ringing patterns should appear as continuous
long-wave trains. The plots indicate that cross-correlation residuals can be misinterpreted as ringing patterns.

This section encompasses the preparation of the training data set, the understanding of coherent and nuisance features,
the architectural specifics of SymAE, and the redatuming process aimed at capturing backscattering and ringing
effects in the cross-correlated seismic data. Table 1 provides a summary of the key mathematical notations relevant to
subsequent discussions.

4.1 Training data set

The fundamental data structure utilized by SymAE consists of a collection of multiple datapoints. The processed
seismic data are systemically organized into these datapoints, each corresponding to a different reference receiver
position. For nr reference receiver positions, there exist nr corresponding datapoints. SymAE is designed to process
each datapoint separately, working on one individual datapoint at a time. The datapoints aimed at extracting backscatter
correlations and ringing effects are structured as follows:

• Datapoints for extracting backscatters: The elements of each datapoint are CCNs with varying source
signatures. For instance, the datapoint Br corresponding to a reference receiver position r is expressed as:

Br =
[
gk1
r,s1 , g

k2
r,s1 , g

k3
r,s2 , g

k4
r,s2 , g

k5
r,s3 , g

k6
r,s4 , · · ·

]
. (8)

• Datapoints for extracting ringing effects: Here, each datapoint encapsulates CCNs associated with the
closest source location. Thus, the datapoint Yr for a reference receiver position r with the closest source
location sr is formulated as:

Yr =
[
gk1
r,sr , g

k2
r,sr , g

k3
r,sr , · · ·

]
. (9)

For clarity in our subsequent discussions, we will refer to the general datapoint as Xr, which may represent either Br

or Yr, depending on the feature being extracted. The collection of these datapoints is known as the data set, denoted by
{Xr}, and is used during the training of SymAE.
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Notation Description Dimension/Quantity
Data Representation

gkr,s Individual CCN / flattened individual CCN Rnτ×ntr / Rn

Xr Datapoint: collection of nw flattened CCNs for the same reference
receiver position

Rn×nw

Xr[i] i-th flattened CCN (simply referred as CCN) in datapoint Xr Rn

nτ Number of time lags in each CCN Scalar, nτ ∈ N
ntr Number of traces (receivers) in each CCN Scalar, ntr ∈ N
n nτ × ntr Scalar, n ∈ N
nw Number of CCNs in a datapoint Scalar, nw ∈ N
nr Number of reference receiver positions Scalar, nr ∈ N

Feature Representation
Pr Coherent subsurface code: consistent characteristics within a data-

point Xr

Rp

N
k
r,s Nuisance code: CCN-specific variability Rq

SymAE Architecture
PEnc (PEnc1
and PEnc2)

Symmetric Encoder: designed to extract coherent subsurface code
from all CCNs within a datapoint

Rn → Rp

NEnc Nuisance Encoder: designed to extract CCN-specific nuisance code NEnc : Rn → Rq

Dec Decoder: reconstructs CCN from coherent subsurface and nuisance
codes

Dec : Rp × Rq → Rn

p Dimension of the coherent code Scalar, p ∈ N
q Dimension of the nuisance code Scalar, q ∈ N

Training and Evaluation
X̂r Reconstructed datapoint Rn×nw

L Expected reconstruction error Scalar, L ∈ R≥0

Table 1: Summary of key mathematical notations

4.2 Features

Understanding the features present in the CCNs within the data set is essential. We analyze these features by considering
a convolutional model with a point noise source. Each CCN can be expressed as a discrete convolution between the
cross-correlated Green function, g0 and the noise source autocorrelation wk. It is important to note that g0 remains
constant in different time windows. As previously mentioned, each CCN is normalized at (δx = 0, τ = 0). Therefore,
the normalized CCN can also be expressed as:

gk
r,s(δx, τ) = (gkr,s(0, 0))

−1wk(0) g0r,s(δx, τ) + (gkr,s(0, 0))
−1 ∑

t ̸=0

wk(t) g0r,s(δx, τ − t). (10)

We can ignore the variation of (gkr,s(0, 0))
−1wk(0) relative to k and substitute it with a constant c1. Hence, Equation 10

can be approximated as:

gk
r,s(δx, τ) ≈ c1g

0
r,s(δx, τ)︸ ︷︷ ︸

coherent term

+(gkr,s(0, 0))
−1 ∑

t ̸=0

wk(t) g0r,s(δx, τ − t)

︸ ︷︷ ︸
nuisance terms

. (11)

In this formulation, every CCN is delineated by two components:

• Coherent features: These latent features encapsulate coherent subsurface characteristics shared by all CCNs
within a datapoint. They are hypothesized to correspond to the term c1 g

0
r,s, which represents the coherent

correlations specific to the reference receiver position r.
• Nuisance features: These latent features capture variations that deviate from the coherent subsurface charac-

teristics. They are hypothesized to correspond to the nuisance terms, represented by (gkr,s(0, 0))
−1wk g0

r,s at
nonzero time steps, which are specific to the noise window indexed by k. This component reflects the influence
of individual source signatures or other factors introducing variability in CCNs.
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Figure 7: The architecture of a symmetric autoencoder that disentangles subsurface information, coherent across
multiple CCNs, from the CCN-specific source effects (denoted by different arrow colors). Coherent information
can only propagate through the network via solid arrows with dropout masks inhibit its propagation. Dashed arrows
represent excluded coherent features, while varying arrow styles indicate randomness in nuisance data. Consequently,
the autoencoder effectively disentangles coherent information from nuisance variations within the latent space.

In the case of extended sources with temporally correlated signatures, more terms might contribute to the coherent
features in Equation 11.

4.3 SymAE architecture

SymAE is a statistically constrained autoencoding architecture that disentangles coherent subsurfaces and nuisance
effects using permutation invariance and stochastic regularization. The architectural details of SymAE are depicted in
Figure 7, which features two encoders dedicated to encoding subsurface and nuisance information, respectively, and a
decoder tasked with reconstructing CCNs in an almost lossless manner utilizing both codes. These components are
described in detail as follows:

• Symmetric Encoder: The symmetric encoder, PEnc, is designed to extract coherent features shared by all
CCNs within Xr. Essentially, the architecture of PEnc ensures that, when applied to Xr, it generates a single
coherent subsurface code Pr ∈ Rp that represents only coherent subsurface features, excluding CCN-specific
nuisance information. However, as indicated by the universal approximation theorem (Hornik et al., 1989;
Cybenko, 1989), an unconstrained PEnc would capture both coherent and nuisance information. To address
this, we impose a permutation invariance constraint on PEnc. This constraint ensures that extracted coherent
features are independent of the ordering of the CCNs in Xr. Mathematically, this means that

Pr = PEnc(Xr) = PEnc(Π(Xr)). (12)
Here, Π is a random permutation function that reorders the elements of Xr according to a random permutation
Π of the indices {1, 2, . . . , nw}, i.e.,

Π(Xr) = [Xr[Π(1)], Xr[Π(2)], . . . , Xr[Π(nw)]] , (13)
where Π is a bijection Π : {1, 2, . . . , nw} → {1, 2, . . . , nw} that shuffles the indices of Xr randomly.
In practice, we adopt the network architectures outlined in Zaheer et al. (2017) that can approximate functions
with permutation-invariance properties. Specifically, we employ the mean pooling operation to enforce
permutation invariance. This is achieved through a series of transformations. First, a neural network PEnc1 is
applied to each element of Xr. The transformed elements are then aggregated using a mean pooling operation,
and finally, a second network PEnc2 generates the coherent latent code Pr:

Pr = PEnc(Xr) = PEnc2(mean(PEnc1 • (Xr))). (14)
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In this formulation, f • (X) denotes the application of a function f to each element of the vector X . The
mean pooling operation maintains symmetry with regard to the ordering of CCNs within a datapoint, thereby
ensuring the necessary permutation invariance for PEnc, as described in Equation 12. Since the encoder
is constrained to capture only features that are coherent across all CCNs, it cannot effectively represent
CCN-specific features, such as source-signature effects, without a significant loss of information.

• Nuisance Encoder: The second encoder, termed nuisance encoder, NEnc, encodes the CCN-specific informa-
tion for each element of the datapoint Xr. Each element ∈ Rn is mapped to an intermediate feature space
Rq, where q represents the dimension of the nuisance code. Unlike the symmetric encoder, NEnc operates
without any architectural constraints. However, if the output of NEnc is not constrained during training, a
significant concern arises: the decoder Dec may prioritize information from the nuisance encoder over the
coherent component Pr during reconstruction. To address the potential issue of the decoder neglecting coher-
ent information, SymAE incorporates stochastic regularization through dropout masks during training. This
regularization employs Bernoulli dropouts (Srivastava et al., 2014) with a probability of p = 0.8. Unlike the
traditional use of dropouts for regularizing functions approximated by deep neural networks, SymAE employs
dropouts to: 1. prevent the nuisance encoder from inadvertently capturing coherent subsurface information,
and 2. encourage the decoder to prioritize and extract the most meaningful information from the symmetric
encoder, as the dropout intentionally obscures certain information. Thus, the nuisance code of a particular
CCN, say gk1

r,sr , is

N
k1
r,sr = Nr,sr [1] = dropout(NEnc(gk1

r,sr ), p), (15)

which represents the information specific to the source location sr and the noise in the first time window k1.
Dropout masks are utilized exclusively during the training phase. After training, these masks are deactivated
by setting p = 0 to produce the complete Nr,sr [·] code. Evidently, dropout is implemented on each CCN in a
datapoint.

• Decoder: A network, Dec, nonlinearly decodes the latent codes to reconstruct the datapoint as:

X̂r = Dec •
([
[Pr; N

k1
r,sr ], [Pr;N

k2
r,sr ], [Pr;N

k3
r,sr ], · · ·

])
, (16)

where [P ; N ] denotes concatenation of codes P and N .

This design of SymAE allows for the simultaneous learning of coherent and nuisance features without prior knowledge
of their specific characteristics or distributions.

4.4 Training SymAE

In this study, the encoders (PEnc and NEnc) and the decoder (Dec) are parameterized using fully connected feedforward
networks. These networks are trained simultaneously by minimizing the reconstruction loss,

L =
1

nr × nw

nr∑

r=1

nw∑

i=1

∥Xr[i]− X̂r[i]∥2, (17)

where nr denotes the total number of datapoints (i.e., reference receiver positions). The use of permutation invariance
and stochastic regularization establishes a distinct information flow in SymAE, as depicted in Figure 7, characterized
by: 1. a continuous flow of coherent information from the symmetric encoder, represented by the solid black arrow,
and 2. outputs from the nuisance encoder that comprise randomly obscured information, with varying line styles (such
as dashed, dash-dotted, and dotted) indicating the exclusion of coherent features. Through training, the symmetric
encoder becomes proficient in extracting coherent features, as these are consistently useful across all reconstructions.
Meanwhile, the nuisance encoder specializes in capturing CCN-specific information, which cannot be encoded by the
symmetric encoder but is essential for accurately reconstructing each CCN.

The dimensions p and q of the latent codes are user-defined hyperparameters. The optimal values of these dimensions
were chosen by training on the synthetic data and adopted for the field data. Furthermore, keeping q small limits the
expressiveness of the nuisance encoder, which further assists the decoder in prioritizing the extraction of relevant
coherent features. Effective training of SymAE requires a sufficient number of datapoints, corresponding to reference
receiver positions, to prevent overfitting. This ensures that the model learns a robust representation in the latent space,
effectively distinguishing between coherent and nuisance features.
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Figure 8: Illustration of the redatuming process used to generate a VCCN via Equation 18. The arrows depict the flow
of information during this process. The symmetric encoder extracts the coherent latent code from the datapoint Xri ,
while the nuisance encoder encodes the nuisance latent code from the CCN gk

rj ,sj . These latent codes are concatenated
to form an altered latent code, which is decoded by the decoder to generate the VCCN for ri. All CCNs and the VCCN
depicted in this plot share the identical axes as those depicted in Figure 4.

4.5 Redatuming

The trained SymAE model can be utilized for redatuming, a process that generates virtual cross-correlation gathers
(VCCNs) by decoding altered latent code. This altered latent code is formed by concatenating the coherent latent code
from a single datapoint (specifically, a reference receiver position) with the nuisance latent code derived from a specific
CCN associated with another datapoint. The decoder then processes the concatenated latent code to synthesize a VCCN,
which lies outside the training data set. This process is illustrated in Figure 8 for generating a VCCN at the reference
receiver position ri. The symmetric encoder extracts the coherent latent code Pri from the datapoint Xri , while the
nuisance encoder encodes the nuisance latent code Nk

rj ,sj from the CCN gk
rj ,sj . These latent codes are concatenated

and then decoded to produce the VCCN for ri. Once the symmetric encoder, nuisance encoder, and decoder have been
trained, they can be employed to build the VCCN generator. Mathematically, the resulting VCCN can be expressed as:

Dec
([

Pri ; N
k
rj ,sj

])
≈ c1 g

0
ri,sj +(g

k
rj ,sj (0, 0))

−1 ∑

t̸=0

wk(t) g0rj ,sj (τ − t). (18)

In the RHS, the first term represents the coherent information from the reference receiver position ri, while the second
term captures the nuisance variations introduced by the noise source indexed by k at a different source location sj .

Earlier research on SymAE applied redatuming to generate virtual data and showcased its applications. However, the
VCCN still contains nuisance information, as shown in Equation 18, making it challenging to identify void signatures
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within the generated VCCN. Therefore, removing nuisance information is crucial. This paper suggests generating
differential virtual cross-correlations (DVCCs) for each reference receiver position, employing one of two approaches:

• Subtracting a baseline VCCN: This approach involves subtracting two VCCNs, corresponding to two separate
data points, both produced using identical nuisance information. The subtraction extracts the difference in
subsurface information between those two reference receiver positions. To demonstrate this mathematically,
let us consider two datapoints Xrl and Xrm corresponding to the reference receiver positions, rl and rm,
respectively. Initially, we determine the coherent subsurface codes, Prl and Prm , for these datapoints by
applying Equation 14. Likewise, the identical nuisance code Nk

rj ,sj of a specific CCN gk
rj ,sj is formulated

using Equation 15. By employing the VCCN generator, as depicted in Figure 8, the two VCCNs for rl and
rm can be created. Following the approach of Equation 18, these two VCCNs can then be mathematically
represented as:

Dec
([

Prl ; N
k
rj ,sj

])
≈ c1 g

0
rl,sj

(δx, τ) + ( gkrj ,sj (0, 0))
−1 ∑

t ̸=0

wk(t) g0rj ,sj (τ − t), (19)

Dec
([

Prm ; Nk
rj ,sj

])
≈ c1 g

0
rm,sj (δx, τ) + ( gkrj ,sj (0, 0))

−1 ∑

t ̸=0

wk(t) g0rj ,sj (τ − t). (20)

Since the identical nuisance code is employed during the generation of these VCCNs, the nuisance terms in
RHS of Equations 19 and 20 can be easily eliminated. This elimination is achieved by subtracting the VCCNs,
resulting in a DVCC:

vrl−rm(δx, τ) ≈ c1 g
0
rl,sj

(δx, τ)− c1 g
0
rm,sj (δx, τ). (21)

The DVCC captures the difference in coherent subsurface features between the two reference receiver positions,
rl and rm, with the nuisance effects eliminated. This enables the identification of void signatures in the
subsurface. As demonstrated in Figure 9, we apply this approach to synthetic data from a backscattering
experiment. Here, two VCCNs are generated for reference receiver positions r = 100m and r = 44m,
using the identical nuisance code from a specific CCN g1

10,s10 . The subtraction of these VCCNs removes the
nuisance, resulting in the DVCC v100−44. This DVCC reveals the backscatter correlations, as shown in the
figure. Consequently, this approach enables the extraction of differential subsurface characteristics between a
baseline reference receiver and a reference receiver position of interest, thereby facilitating the identification
of void signatures.

• Subtracting an average VCCN: Rather than relying on a specific reference receiver position as a baseline, this
alternative approach leverages VCCNs from all reference receiver positions within the data set. In this method,
a mean VCCN is calculated by averaging the VCCNs generated with identical nuisance information. This
averaged VCCN is then subtracted from the VCCN at the specific reference receiver position of interest, thereby
removing the identical nuisance effects and producing the DVCC. This process is illustrated in Figure 10 using
the same synthetic data from the backscattering experiment. Instead of selecting a single VCCN, such as the
one corresponding to r = 44m, an averaged VCCN is computed by averaging the VCCNs from reference
receiver positions spanning r = 14m to r = 144m. This averaged VCCN is then subtracted from the VCCN
for r = 100m to generate the DVCC v100. Similar to the previously discussed DVCC v100−44, backscatter
correlations are also evident in v100. This approach has the advantage that the DVCC v100 does not rely on
the choice of a specific baseline reference receiver. Mathematically, the averaged VCCN with the identical
nuisance code Nk

rj ,sj can be expressed as:

1
N

∑N
i=1 Dec

([
Pri ; N

k
rj ,sj

])
≈ 1

N

N∑

i=1

c1 g
0
ri,sj (δx, τ) + (gkrj ,sj (0, 0))

−1 ∑

t ̸=0

wk(t) g0rj ,sj (τ − t). (22)

Here, the initial term represents the mean of the coherent information distributed across all reference receiver
positions. Under the assumption of lateral homogeneity with the exception of the void, a majority of the
reference receivers do not detect the void. Consequently, as the number of reference receivers is increased, the
initial term will predominantly reflect the characteristics of the laterally homogeneous medium. The VCCN for
a specific reference receiver position, denoted as rl, is provided in Equation 19. By subtracting the averaged
VCCN (Equation 22) from the VCCN corresponding to rl, the DVCC for rl is obtained as follows:

vrl(δx, τ) ≈ c1 g
0
rl,sj

(δx, τ)− 1

N

N∑

i=1

c1 g
0
ri,sj (δx, τ). (23)
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Figure 9: Illustration of the process outlined in Equation 21 to generate the DVCC utilizing synthetic data obtained
from the backscattering experiment. VCCNs are calculated for reference receiver positions r = 100m and r = 44m,
applying the same nuisance code from g1

10,s10 . By subtracting these VCCNs, the nuisance is eliminated, yielding the
DVCC v100−44. This DVCC reveals backscatter correlations, which highlight differential subsurface characteristics.
The arrows indicate the flow of information. All CCNs, VCCNs, and the DVCC depicted in this plot share the identical
axes as those depicted in Figure 4.

Synthetic experiments in the Figures 9 and 10 demonstrate that both approaches are effective in isolating backscatter
correlations. Nonetheless, for field experiments, the second method proved more effective in extracting ringing
signatures, although the cause of this difference needs further investigation. Consequently, we employed the first
approach for backscattering and the second approach for ringing, to ensure the accurate extraction of void signatures, as
discussed in the subsequent results section.
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Figure 10: Illustration of the redatuming process used to compute the DVCC v100 by subtracting an averaged VCCN.
The averaged VCCN is calculated as the mean of VCCNs generated for all reference receiver positions (r = 14m
to r = 144m). The DVCC v100 captures coherent subsurface information (here, backscatter correlations) specific
to r = 100m while eliminating nuisance effects. All CCNs, VCCNs, and the DVCC depicted in this plot share the
identical axes as those depicted in Figure 4.
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5 Results

5.1 Backscatter

Within the framework of the backscattering experiment, the outcomes for three distinct reference receivers ∈
{60, 100, 122}m are delineated in Figure 4, with r = 44m serving as the baseline reference receiver. These
reference receivers are selected based on their proximity, the presence of a void at approximately 100m, and the
position beyond the void at 122m. We anticipate that the difference between the stacked cross-correlated data, ḡ44,s
and ḡ60,s, to converge towards zero, provided that the subsurface conditions at these reference receiver locations exhibit
similarity, as depicted in Fig. 2. However, due to the cross-correlation residuals, as demonstrated in Figures 4a and 4d,
the discrepancy remains substantial in 2.5-minute and 5-minute scenarios, suggesting that extended durations are
necessary for cross-correlations to achieve convergence. Similarly, for ḡ100,s, where the receivers capture both direct
and backscattered surface waves, we expect to observe backscatter correlations. However, these backscatter correlations
were obscured by the cross-correlation residuals (Figures 4b and 4e). Our focus is now directed towards training SymAE
with the data set {Br} and redatuming to generate virtual cross-correlation gathers for reference receiver positions
ranging from r = 14m to r = 144m. Utilizing Equation 21, we generated DVCCs to monitor variations in subsurface
properties between the baseline reference receiver (r = 44m) and the other reference receivers ∈ {60, 100, 122}m.
The expectation of no variation between the reference receivers at 60m and 44m is validated (Figures 4g and 4j). Addi-
tionally, we verified the similarity in subsurface properties for multiple reference receiver positions up to approximately
r = 100m, where we expect the presence of backscattered surface waves. The DVCCs in Figures 4h and 4k distinctly
depict these backscattered correlations (←,→

gk
r,s and →,←

gk
r,s), demonstrating the efficacy of our method. The depth

sensitivity of the method has also been evaluated. In this experiment, the dominant frequency of the backscattering
was found to be 12.5Hz, with Vs in the range of 300 − 330m/s at the site, resulting in a backscatter wavelength of
approximately 24− 26.4m. Previous studies (Sloan et al., 2016, 2021) suggest that depth sensitivity typically ranges
from 0.33 to 0.5 times the wavelength, meaning the detectable depth of the void in our study would be in the range of
8 − 13.2m, consistent with the known depth of approximately 10m. Moving further from the void, for r = 122m,
theoretically, we still expect to observe backscattered energy. However, it was not observed in this example (Figures 4i
and 4l). Although the exact reason remains unknown, we attribute this to the attenuation of weaker backscattered energy
— the backscattered signals were observed upto r = 110m.

5.1.1 2D synthetic experiment validation

We performed a set of elastic simulations by employing a Ricker wavelet within a constant velocity medium containing
a void. In order to create a noise data set to validate field observations, the simulation data were convolved with
vehicular noise similar to that depicted in Figure 1b. The simulations were performed in the finite-difference-time
domain (FDTD) using Geophyinv.jl package. True cross-correlated Green’s functions (Figures 11a–11c) were also
generated for an impulsive source using a Ricker wavelet. The results of this synthetic data set exhibited a high degree
of congruence with the field results and were further evaluated by calculating the mean squared error (MSE) between
the normalized true cross-correlated Green functions and the results derived from linear stacking (Figures 11d–11i)
and redatuming (Figures 11j–11l) across the 2.5-minute and 5-minute intervals. In contrast to the field experiment, we
detected significant backscattered energy in the DVCCs (Figures 11i and 11l) for r = 122m due to the non-attenuating
medium used in our simulations.

5.2 Ringing

In addition to backscattering, the ringing pattern constitutes another distinct signature of the void. However, ringing
patterns can be misinterpreted due to cross-correlation residuals, as discussed in the theory section (refer to Figure 6).
By leveraging SymAE’s capability to extract coherent information and eliminate cross-correlation residuals, we trained
SymAE with the data set {Yr} and conducted redatuming to isolate the distinct ringing pattern. DVCCs (Equation 23),
derived by subtracting the averaged VCCN, for states ∈ {60, 104, 120}m with the nuisance information from the
reference position r = 44m are illustrated in Figures 12d–12f. In the absence of cross-correlation residuals, no
ringing pattern is discernible for r = 60m and r = 104m, as depicted in Figures 12d and 12e, respectively. However,
Figure 12f demonstrates that the ringing pattern is consistent for r = 120m. It should be noted that the CCNs in the
data set {Yr} contain all positive and negative time lags, but only results for higher positive lags are shown to highlight
that the ringing pattern is a continuous wave train, best observed at higher lags. These observations strongly corroborate
our hypothesis that cross-correlation residuals can lead to misinterpretations of the ringing pattern using linear stacking.
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Figure 11: Similar to Figure 4, but depicting results from a synthetic experiment. Lower mean squared error (MSE)
values (red boxes) indicate lower cross-correlation residuals — thanks to SymAE redatuming. The true cross-correlated
Green’s functions were resampled for MSE calculation purposes. During MSE computation, all stacked CCNs, DVCCs,
and the true correlated Green’s functions were subject to normalization.
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Figure 12: Ringing patterns as a void signature: DVCCs, derived by subtracting the averaged VCCN from those
at r ∈ {60, 104, 120}m subsequent to SymAE training and redatuming: (a) and (b) exhibit the absence of ringing
patterns for r = 60m and r = 104m, and (c) demonstrates the persistence of the ringing pattern for r = 120m for the
synthetic data. Panels (d)-(f) present the same analysis for the field data. DVCCs are scaled by a factor of 2 compared
to stacked CCNs in Figure 6.

5.2.1 2D synthetic experiment validation

We generated a data set by convolving the measured vehicular noise with the data obtained in the ringing simulations
discussed in Figure 5. The data were organized according to the method described to generate datapoints Yr to extract
ringing effects. SymAE was trained using this synthetic data set. It was anticipated that only the reference receiver
at r = 120m, being closest to the void when the source was above it, would exhibit a distinct ringing pattern similar
to Figure 5o. However, in Figures 6a– 6f, similar patterns were observed in the 2.5-minute and 5-minute scenarios,
making it difficult to detect the ringing pattern. This also suggests that the ringing pattern and cross-correlation residuals
can be visualizing similar. Then, we analyzed the DVCCs (Equation 23), derived by subtracting the averaged VCCN,
for states ∈ {60, 104, 120}m with the nuisance information from the reference position r = 44m. These DVCCs,
shown in Figures 12a–12c, clearly demonstrated that SymAE was able to remove the cross-correlation residuals for
r = 60 and r = 104m and the ringing pattern is intact for r = 120m. Moreover, a brief discussion on 3D synthetic
simulations is provided in Appendix C.

6 Discussion

By leveraging a neural network-based nonlinear stacking approach, SymAE addresses the limitations of traditional linear
stacking, significantly enhancing the S/N and revealing distinct void signatures, specifically backscattering and ringing
patterns. Backscattering phenomena have been extensively studied, and their characteristics are well-documented in
prior research. The relationship between backscattered wavelengths and void depth is particularly useful, allowing
us to estimate the depth of the void at site 1 to be in the range of 8 − 13.2m, consistent with its known depth of
approximately 10m. This makes backscattering a reliable indicator for void detection and depth estimation. However,
synthetic experiments suggest that backscattering signals are not unique to voids; similar effects can occur around
high-velocity anomalies such as boulders and concrete foundations. These anomalies, if present, may create false
positives. In this study, no such anomalies were detected at site 1, allowing a more straightforward interpretation
of the backscatter signals. The phenomenon of ringing remains less well-understood due to the variety of potential
contributing mechanisms. These include circumferential wave propagation along void boundaries (Korneev, 2009),
internal acoustic modes (Rubin et al., 2014), and resonant emissions from energy trapped within the void (Schneider
et al., 2017). This study discusses the ringing pattern as the resonant emission of trapped seismic energy. Additionally,
we observed that ringing is evident primarily when the source is positioned close to or directly above the void, though
this observation may be site specific. The ringing of the void depends on its nature, size, depth, and material properties.
Our synthetic experiments for high-velocity anomalies such as boulders or concrete foundations indicate an absence of
ringing. In contrast, ringing is observed for low-velocity air-filled or partially-filled voids. Thus, ringing can serve as a
distinctive signature of low-velocity voids. Field data did not definitively reveal how the diameter of the void influences
the detectability of backscattering and ringing, although synthetic tests, using low-frequency Ricker wavelet, suggest a
minimum diameter of roughly 1.5m is required for these signatures to be observed.
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SymAE is particularly effective in identifying these void signatures by deriving the coherent subsurface details from
short 5-minute intervals of seismic noise. Employing cross-correlated data facilitated the training of SymAE, as
obtaining coherent information from unprocessed (raw) noise posed difficulties. In our study, SymAE successfully
processed data over a survey length of 148m in a single setting, with the capacity to handle larger data sets, allowing a
wider area coverage per survey. SymAE’s training process is efficient, typically taking 5− 10minutes for a 148m data
set, although it requires a sufficient volume of datapoints to ensure robust learning and avoid overfitting. Furthermore,
SymAE is a train-on-the-fly technique instead of relying on pre-training, which permits flexibility and the ability to
train in any new environment.

7 Conclusion

In this paper, we introduced, 1. a vehicle source that generates lower frequencies to augment the depth of geophysical
investigations, and 2. a novel application of a neural network architecture,named SymAE, to seismic noise, specifically
designed to effectively separate coherent subsurface information from nuisance source effects. SymAE exhibits a
pronounced enhancement in mitigating cross-correlation residuals, which present substantial challenges in the processing
of short-duration vehicle seismic noise. Our methodology addresses the inherent limitations of conventional linear
stacking by leveraging the non-linear nature of neural networks. SymAE successfully extracted both void signatures in
approximately 80% of the investigated void locations. Combining SymAE with redatuming techniques, to eliminate
nuisance effects, has advanced the detection and analysis of subsurface voids. This underscores SymAE’s potential to
significantly enhance S/N in geophysical data processing, particularly with shorter noise intervals, to detect subsurface
features in urban environments. The ability of SymAE in mitigating cross-correlation residuals, explored in this study,
has potential applications across diverse fields such as environmental monitoring, groundwater surveillance, and civil
engineering. Future studies might concentrate on applying SymAE to short-duration ambient noise data in urban
settings for rapid and precise near-surface assessments.

A MASW experiment

At site 1, we executed comprehensive MASW surveys utilizing a 20 kg sledgehammer as the seismic source. The
data acquisition adhered to the ideal parameters noted in Park et al. (2002) and Park (2003). A 24-channel setup with
vertical geophones spaced 2m apart collected the data. To enhance the S/N, three hammer shots were stacked at each
spot. Figure A.1 illustrates the dispersion image and the 1D inversion outcome for the stacked shot gather when the
12th receiver was positioned over the void (i.e., at x = 100m). We expected to observe a low-velocity contrast in the
inversion due to the characteristics of an air-filled void, yet no such contrast appeared. Furthermore, the dispersion
image lacked low-frequency components, underscoring the necessity of deploying a low-frequency source for successful
void detection.

B Choice of δx

The selection of δx differs between the backscattering and ringing experiments, as it is determined by the nature of the
void signatures being extracted. In the backscattering experiment, δx ranges from negative to positive values because
the backscattered signals often exhibit a hyperbolic pattern, necessitating a broad range. In contrast, for the ringing
experiment, δx is limited to negative values (i.e., decreasing x in Figure 2), as the ringing effect is predominantly
observed in receivers located to the left of the reference receiver. Moreover, δx must be chosen such that the flattened
dimension n (outlined in Table 1) of the flattened CCN stays adequately low, ideally maintaining the vector dimension
under 4000. This limitation is critical to prevent the overfitting of fully connected feedforward networks used in the
SymAE model.

C Synthetic experiment: 3D modeling of void

In addition to conducting synthetic experiments in 2D, where the void was modeled as a circular anomaly within
an elastic and homogeneous medium, we extended our analysis to a three-dimensional (3D) framework. In this 3D
experiment, we modeled the void as a cuboid within a 3D acoustic homogeneous medium. This shift to acoustic rather
than elastic modeling was necessitated by computational limitations, specifically the memory and time constraints
associated with elastic modeling in 3D. The synthetic model comprises a 3D medium with dimensions 250m x 300m x
100m in the x-, y-, and z- directions, respectively. The cuboidal void, measuring 2m x 300m x 2m, is located at a
depth of 10m along the z-axis and extends parallel to the y-axis. The x-position of the void is 100m. The acquisition
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Figure A.1: (a): Dispersion image of the stack of three gathers with the dispersion curve picked using an auto-picking
function. The plot clearly shows the absence of low frequencies. (b): 1D inversion of the same data, highlighting the
inability of MASW to detect the low-velocity void at 10m depth.

system is oriented parallel to the x-axis. Modeling was performed using the finite-difference-time domain (FDTD)
method implemented in GeoPhyInv.jl, with a Ricker wavelet used as the source. Given memory limitations, a cuboidal
representation was selected for the void, as modeling it as a cylinder would have necessitated a finer point spacing
to achieve accuracy, which was beyond our computational capabilities. Figures C.1 and C.2 display snapshots of the
wavefield in the x-y and x-z planes, illustrating wave propagation within the homogeneous medium both with and
without the cuboidal void, as well as the differences in the resulting wavefields. These figures demonstrate the void’s
ringing effect due to the wave interactions. Figure C.3 shows the raw shot gathers (without cross-correlations) for the
homogeneous medium, both with and without the cuboidal void, and the differences in these wavefields. Our results
indicate that the backscatter and ringing signatures observed in the 3D acoustic modeling are qualitatively similar to
those noted in the 2D elastic experiments. This consistency across dimensional scales justifies our use of 2D synthetic
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Figure C.1: Seismic wavefield snapshots, analogous to Figure 5, in the x-y plane along the z = 10m slice of a 3D
simulation. Panels (a)–(l) show temporal snapshots of seismic wavefields in both a homogeneous medium and a medium
containing a void, along with the difference between the two wavefields.

data in the primary analysis and discussion of results, while 3D modeling provides additional insights into the impact of
the void’s shape and dimensionality on scattering behaviors.
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Figure C.2: Seismic wavefield snapshots, similar to Figure C.1, but in the x-z plane along the slice y = 100m of a 3D
simulation.
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Figure C.3: Raw shot gathers recorded during the 3D simulation: Panels (a)–(c) display shot gathers for the homogeneous
medium, both with and without the cuboidal void, along with the differences in these wavefields. The void is located at
x = 100m, and the gathers are plotted for receivers ranging from r = 90m to r = 110m. The backscatters appear as a
hyperbola in panel (c).
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